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1. Introduction 

The presence of  magnet ic  fields in na ture  is a c o m m o n  phenomenon .  Our  ear th  pos-  

sesses an app rox ima te  d ipole  field a l igned at  a b o u t  15 ~ f rom its ro t a t iona l  axis with a 

s t rength o f  �89 G,  and,  accord ing  to fossil  evidence, the field has an ancient  his tory.  

The Sun, which is an average star, possesses a magnet ic  field of  apparen t ly  compl ica ted  

structure and configurat ion.  The average value o f  the solar  field (on the surface of  

the Sun) is 1 G,  bu t  this average is der ived f rom a very heterogeneous  d is t r ibut ion  of  

fields ranging  f rom zero to several  thousands  of  gauss in sunspots.  M a n y  stars are 

also known  to possess magnet ic  fields with strengths in excess o f  500 G,  which is the 

present  lower  l imi t  o f  de tec tabi l i ty  o f  s tel lar  magnet ic  fields (C67) t. In  one case the 

average field s t rength is in excess o f  3.4 x 104 G,  a b o u t  twice the sa tu ra t ion  field o f  

iron! Our  G a l a x y  also possesses a magnet ic  field whose s t rength is a few t imes 10 .6  G. 
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The energy density of the field is comparable to the kinetic energy density of gas in our 
Galaxy, and the galactic field is believed to have a nonnegligible effect on the structure 
of our Galaxy (W64a, $66). 

The role played by magnetic fields in astrophysics has been extensively discussed 
($66, C67, W64, Ca67, CC68d, CC68e). Most fields discussed have strengths much 
less than 105 G and such fields will hereafter be referred to as classical fields since for 
such fields the quantum effect is not likely to play any significant role in astrophysics. 
Exceptions are: (1) low temperature physics with a cryogenic temperature; (2) Zeeman 
splitting of atomic lines, which has been discussed elsewhere. Although on occasion 
fields more intense than 105 G can still be regarded as classical, in no case can quan- 
tum effects be entirely neglected when the field strength is greater than 108 G. 

In the following sections we will briefly summarize the properties of classical mag- 
netic fields, in particular, the source of magnetic fields in astronomical objects and the 
flux conservation law. In the remaining part of this paper, we will be concerned with 
the quantum effects of magnetic fields in astrophysics. 

2. The Source of Magnetic Fields in Astronomical Objects 

As far as we know, magnetic fields can only be generated and maintained by one of 
the following processes: 

(1) Moving charges (electric current). 
(2) Alignment of spin magnetic moment. 
(3) Alignment of magnetic moment due to orbital angular momentum of some types 

of atoms. 
(4) Landau Orbital Magnetized State. 

The presence of an electric current in a conductor can generate a magnetic field 
according to the Maxwell equation: 

47~ 
curlH = - -  j .  (2.1) 

C 

However, the current density is subject to Ohmic dissipation. In conductors of 
ordinary size (e.g., coils in a small transformer) the Ohmic dissipation will dissipate 
a current completely in a matter of milliseconds, in the case of astronomical objects 
such as stars and nebulae, the conductivity is so high and the inductance so large that 
the time of decay ranges from millions to billions of years. 

On the other hand, in order to align the spin or orbital magnetic moment, invariably 
a solid crystalline structure is needed. Further, the temperature cannot exceed the 
Curie temperature, which is of the order of 103 K. As a result, although (2) and (3) are 
important processes in solid matter possessing permanent or semipermanent mag- 
netism, they are of negligible importance in astronomical objects. The new process 
(4) which can give rise to a semipermanent magnetic field in dense bodies such as 
neutron stars and white dwarfs, will be discussed in a separate section. 
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A current is made of moving charges. In a system in thermal equilibrium in which the 
distribution of velocities is random and isotropic there is no net velocity in any 
direction, and consequently, a system in complete thermodynamic equilibrium does 
not possess a magnetic field. A magnetic field will be present if one of the charges 
(usually electrons) in a medium possesses a small net drifting velocity v d. Let us take 
a simple configuration, that of a cylinder of charged particles rotating with an angular 
velocity co which in turn gives rise to an average linear drift velocity v d (in cm/sec). 
Ley 0 be the density of matter in the cylinder (in g/cm 3) and Z be the average number 
of free charge per atom of average mass number A. Then the field at the test point is 
given by Equation (2.1). With a simple calculation one can show that the expression 
for the field His  given by (R in cm) 

H/H. ~ 10 2 ~ oR, 
m2c 3 

H q -  eh - 4 . 4 1 4 x  1013G. (2.2) 

The Planck constant h has been purposely introduced only for comparison with 
quantum regime. Here R is the linear dimension over which the drifting charges ex- 
tend. If  Q = 1, Z/A = 1, R-~0.1, then a field of 10 4 G can be generated by a relatively 
small drifting velocity of only 1 cm/sec. This is to be compared with the thermal 
velocity of the electrons vth which is approximately (7"4 = 10-4 T) 

vth/c ~- 10-3T41/2 (2.3) 

where T is the temperature. As another example, let us put in (2.2) the conditions 
appropriate to a neutron star: 

wefind 

0 = 1014 g/cm3 , 

H ~- 10 is G.  

Z/A ~- 10-3, v ~- 1 cm/sec (2.4) 

Thus, the existence of a relatively strong field implies only a negligible departure from 
a state of complete thermodynamic equilibrium. 

The origin of magnetic fields has been a knotty problem in astrophysics. It is 
generally believed that turbulence is the cause for macroscopic drifting velocity for 
one of the two component charges in a plasma, but up-to-date theory of turbulence is 
still very crude and does not lend any insight to the solutions of the problem (LL60). 
The condition for turbulence to exist requires a high Reynolds number which is usually 
satisfied on low density plasma such as interstellar plasma. It is thus believed that 
magnetic fields observed in stars originated from their prestellar state. 

Once a current is established the flux is determined by the subsequent events of 
development and by the dissipation. The dissipation is usually small, the time for 
decay being of the order of millions and billions of years. If the subsequent devel- 
opment of the astronomical object carrying a magnetic field follows a simple scaling 
law, then the magnetic field is roughly proportional to the square of the scaling factor. 
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This is easily shown as follows. The Maxwell equation is 

47c 
curl H = - -  j (2.5) 

C 

where j, the current density is equal to the density of charge Qe times the drifting 
velocity. Under a transformation r~c t r  where e is a scaling factor, then the density of 
charge Qe increases as c~ -3. Equations (2.5) is invariant if H--+ct -2 H. Thus the inva- 
fiance of the Maxwell equation requires that ]H[oc r -  z (this result can also be derived 
differently fron flux conservation law of a closed loop of current). 

3. Classical and Quantizing Fields 

In a magnetic field a charged particle suffers a force perpendicular to the field and the 
direction of motion. The equation of motion is: 

e 
1~ = eE + - v  x H (3.1) 

C 

where E is the electric field, p is the momentum, and v x H is the magnetic force. 
Consider now the case E = 0 .  in this case the force is always perpendicular to the 
instantaneous direction of the motion, and hence no work is done on the particle. 
As a consequence the energy of a particle in a magnetic field is invariant. 

In a constant uniform magnetic field along the z-axis the solution of (3.1) is readily 
obtained as (LL62) 

where 

x = x o + RL sin (cot + c 0 
Y = Yo + RL cos(cot + e) 
Z = Z 0 + V z t  

v i E  
RL = V• -- 

ecH 

RL = ?fl;Cc , 

Hq = mZcS/eli,  

cp• _ 7vmc /eH = ? (v/c) (h /mc)  
eH 

c o l  = ecI-t/ , = 1 - ( v / c )  

col = (H/H.) ( /mc2) -1 (me%) 

(3.2) 

(3.3) 

Here ;t c is the Compton wavelength for the electron (3.8615 x 10 -11 cm). The tra- 
jectories are helices with a constant velocity vz in the z-direction, va is the velocity 
of the particle in the plane perpendicular to the field and E is the total energy of the 
electron: 

2 2 2 2 (3.4) E = ' ~ m c  2 v 2 = v 2-- t -  v z = v x -}- Vy q-  v z 

RL is the radius of the orbit projected in the x, y-plane and COL is the angular fre- 
quency of the circular motion in the x, y-plane (the Larmor frequency). (xo, Yo) is 
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the center of  the orbit (the guiding center). The presence of a magnetic field therefore 

confines the motion of the charges particle in the x, y-plane. 

I f  the field is not uniform and if the non-uniformity is small (i.e. 1/H Igrad HI - 1 >> RL) 

then it has been shown that if g r a d H  is in the x, y-plane, the guiding center slowly 
moves toward regions of  weaker fields. I f  IgradH] is along the field line, then as the 
particle moves toward regions of weaker fields the energy in the xy-plane is slowly 

transferred to that in the parallel direction and as the particle moves toward regions 
of  stronger fields the energy in the parallel direction is transferred into that in the 

perpendicular plane. Reflections of  particles can take place if the magnetic field 
gradient is sufficiently large. 

We shall assume that the gradient of  the magnetic field is small and that the circular 

motion of the electron is unaffected by the non-uniformity of  the field.* As the field 
strength increases Rr~ decreases and co L increases. Consider now the de-Broglie wave- 
length of a particle 

h h 2~2 c 

p rnTv yfl 

Comparing it with the Larmor  radius RL, Equation (3.3) we found that quantum 
effects are important  where 

o r  

we have 

RL ~ 2B 

f12 H 
1 - fl= 2=Hq 

2 zk(H/Hq) 7 
= [l + 2 zk(H/Hq).] k ) l .  

We see that a particle with a velocity of 107 cm/sec (~- 1 eV) enters in the quantum 

domain at H-~ 107 G. The classical equation of motion (3.1), f rom which the classical 
trajectories of  a free electron are derived, is therefore expected to be invalid. The 
solution for the trajectory then calls for the use of  the Schrodinger equation or the 
Dirac equation. According to these solutions the circular orbits in a magnetic field 
are quantized. 

The quantized total electron energy is (R28, P30, H31, JL49, CC68a, b, c) 

E (p~, n) = E = mc 2 [1 + (pz/mC) 2 + 2nH/Hq] 1/2 . (3.5) 

n = 0, 1, 2,...  oo is the principal quantum number which characterizes the sizes of  the 
orbits, which are referred to as Landau levels. Comparing Equation (3.5) with the 

* In the case of quantizing fields the Larmor orbit is ~ de-Broglie wavelength ~ 10 -s cm and the 
Larmor period is ~ 10 -s sec. If the field gradient is less than H/(h/mc) and the time rate of change is 
less than H/(h/mc2), all fields can be regarded as time constant and homogeneous in space. 
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usual expression for the energy of an electron 

E = rnc 2 [1 -I- (pzlrrlc) 2 -[- (px/mC) 2 -t- (py/rnc)2] '/2 (3.6) 

2 2 we find that quantization replaces the x- and y-momenta Px+Py by the quantity 
2n (H/Hq) m2c 2. In other words the momentum of the electron in the plane perpen- 
dicular to the field is quantized into a discrete set according to the formula: 

2 2n(H/Hq) m2c z (3.7) p2 _= p2 + py = 

This discrete set becomes continuous as n ~  oe. According to Bohr's correspondence 
principle, when n is large, classical trajectories of the electrons can be applied. However, 
for small values of n the discrete behavior of the perpendicular (_1_) momentum must 
be taken into account. If we assume that the parallel (13 momentum is approximately 
the same as the L-momentum, then the criteria for application of the classical tra- 

jectory is when 

(pJmc)  z >> 2 (n /nq) .  (3.8) 

If we can assign a temperature to the electron, then in the nonrelativistic case 
pZ~/2m ~ kT, and Equation (3.8) becomes: 

k T/mc 2 >> H/Hq (3.9) 

or, numerically, 

T ( K )  ~> 10 -4 H ( G ) .  (3.10) 

That is, at H =  1011 G, classical trajectory analysis is inapplicable even at a temperature 
of 10 7 K. 

In the relativistic limit p~c,,~ k T  and Equation (3.8) becomes: 

(kT/mc2)  2 >> 2 (H/Hq). (3.11) 

At a field of 1013 G even at a temperature of 5.9 x 109K quantization of orbits have 

to be taken into account. 
In a degenerate medium Pz is replaced by the Fermi momentum PF" A similar 

analysis may be made on the applicability of classical trajectory. 

A. STRONG C O U P L I N G  REGIME 

An electron in a magnetic field can make transitions from one orbit to another accom- 
panied by the emission of a photon. Such radiation is called the synchrotron radiation 
(to be discussed later). In classical regimes the energy loss per orbit is usually negli- 
gible, and in computing the trajectories (3.2), the energy loss can be treated as a small 

perturbation. 
In a strong field or when the electron energy is high the energy loss rate will be so 

large that a substantial amount of energy of the electron will be lost before a complete 
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orbit is described. This is the regime of the strong coupling. Two effects must then be 
taken into account. 

(a) The perturbation theory of computing energy loss rate is not applicable and the 
complete wave function must be used to evaluate the energy loss rate and classical 
trajectories cannot be used. This has been worked out by Klepikov (K54) and his 
result has been extensively discussed by Erber (E66). 

(b) The radiation reaction must be taken into account. This has been discussed 
to some extent by Erber, but no quantitative result is available yet. 

This regime is characterized by the condition that the lifetime of electrons against 
synchrotron radiation loss is smaller or comparable to the Larmor period. From the 
expression of the Larmor period and the lifetime against synchrotron radiation 
(to be discussed later), we find that the condition for strong coupling is (7 =E/mc2) 

e 2 H 
- - > 1  or 72H~>6x . F ~ - -  ~22 1015 

hc H~~ 

4. The Impossibility of Spontaneous Pair Creation in a Magnetic Field 

It has often been erroneously stated that in a field greater than 2Hq=8.8 x 1013 G, 
spontaneous pair creation can take place. The basis of this argument is as follows. 
In a magnetic field the non-relativistic spin interaction hamiltonian is given by 

(qh/2mc) ~.H where q = - e  for electron and q=e for positron, with e>0. The 
non-relativistic magnetic energy of an electron with its spin antiparallel to the field is 
-�89 H. The corresponding quantity for a positron parallel to the field is 
�89 H. When H is greater than 2Hq=2m2ca/eh the non-relativistic magnetic 
energy is then greater than 2mc 2, and it was thus concluded that a pair of electron and 
positrons would be created with spins opposite to each other properly aligned with 
the field. However, according to Equation (3.5) the lowest state of energy of an 
electron in a magnetic field remains unchanged and the separation between the 
positive and negative energy states is still 2mc a. Therefore, spontaneous pair creation 
cannot take place. When the anomalous magnetic moment of the electron is taken 
into account (TBZ66, CCFC68), Equation (3.5) is changed to (s = _ 1) 

I ~ -]2)1/2 

When x=0,  n=0 for ~H/&zHq=l or H~1016 G, the lowest energy eigenvalue is 
zero and therefore spontaneous pair creation could occur. This conclusion is however 
invalidated by the fact that for high magnetic field, the form of the anomalous 
magnetic moment cannot be taken to be simply ~/2~z. This point has been emphasized 
by Jancovici (J69). An asymptotic expression for the anomalous magnetic moment 
when H>>Hq can be found in (TBBD69). 
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5. Thermodynamic Properties 

As is well known in classical plasma physics the presence of a magnetic field intro- 
duces an anisotropy only from the magnetic stress (LL62) 

1 
T~p = ~ [ -  E~Ep - H~Hp + �89 (E 2 + H2)] (5.1) 

leaving the equation of state unchanged.* This is because the radius of the classical 
orbits takes continuous values and all values of Z-momentum are available. In the 
case of strong quantization, the _l_-momentum must assume the quantized values 
given in Equation (3.7). 

The equation of state for a gas of electrons may be obtained by evaluating the 
energy momentum tensor (AB65) 

T , v  = - ( 5 . 2 )  

using the exact wave function solutions of the Dirac (R28, P30, H31, CC68, L149, 
R52, S60) or Schrodinger (K27, D28, L30, P30, UY30) equation. This has been done 
in a previous paper (CC68a). in this paper we will present an alternative approach 
based on a re-interpretation of the velocity and the generalization of the usual pro- 
cedure in deriving the equation of state (CCFC68a). 

Because of the cylindrical symmetry of the problem, T~x--Tyy. If  P• is the pressure 
in the direction perpendicular to the field and Pit the pressure in the parallel direction, 
then 

P• = ( T x x )  = ( T , , )  PII = (T~z) (5.3) 

where the symbol ( . . . )  stands for a sum of the contribution of all particles according 
to the distribution funct ionf  (p). 

The pressure is the force exerted on the wall of a container during the reflection of 
particles of velocity v from the wall. In a reflection the exchange of momentum is 
2p~ and the rate of collision is Vx/2 = I~E/@~ = �89 hence (in the x-direction, 
for example) 

P• = (2pzlzvx) = (cE~P2~) = (CE ~pzy ) (5.4) 

In the quantized case we have 

2 2  2 2  2(H//- /q)  2n c p x + c  pr ~ (5.6) 

* As is well known, in the viscosity-free case all diagonal elements vanish and Txx, Try, T~ are pressure 
in the x, y, and z direction. 
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hence we can write Equations (5.4) and (5.5) as 

:<% 
(5.7) 

(5.8) 

The statistical average, as indicated by the symbol (. . .> is achieved by multiplying 
the quantity of interest by the Fermi distribution functionf(p=, n) 

f (p=, n) = {1 + exp/~ [-E (p=, n) - fi]} - -1  (5.9) 

where/~ = (kT)-  2, Tis the temperature and/2 is the chemical potential plus the electron 
rest mass, m c  2. 

The summation overpz in the average ( . . . )  is carried out as usual, that is, 

+oo  

dp - -2nh (5.10) 
P z  -- cO 

and the summation overpx andpy is carried out as follows: 

+o~ +o~  ~ 2 ~  m 

( 2 n h ) 2 ~ - - +  f dp~ f d p r : f p •  2 
P x  Py 

- ~  - o a  0 0 0 

where q~ = tan-  1 py/p~. Quantization requires that 

(5.11) 

hence 
d --, m2c 4 ( / / /G)  >, (5.12) 

oo 

0 

where co. is the degeneracy of the level n. c% is evaluated as follows: when H= O, the 
number of levels in dp~ and dpy atp~ andpy is given by 

(2nh) -z  dpx dp,. (5.14) 

In the presence of H these levels coalesce into those of a harmonic oscillator, as shown 
in Figure 1. The degeneracy of each of these levels is therefore given by integrating 
Equation (5.14) as follows [K65] 

con = (2~Zh) -2 f dp~ dpy 
A < p •  
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where [see Equation (3.7)] 

A = m2c 2 H 2n B -= m 2 c  2 H 2 (n + 1). 
G 

dp x dpy (2~)2 " 

Fig.  1. 

ii• n=3 

~ n=2 

~ n=l 

H=O H~O 
The coalescence of free particle states into equally spaced harmonic oscillator energy states in 

the presence of a magnetic field. 

Introducing the cylindrical coordinates (p• qS), we then obtain: 

2n 

con = (2nh) -2 f dq5 f p• dp• = 2n(2nh)  -2 �89 - A)  

0 A<pj_a<B 

1 
~o. = ~ (h i .o )  -2 ( u / G ) .  

(5.15) 
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Equat ions  (5.7) and (5.8) therefore become:  

co + c o  

P• - 8re 2 2~ d (p=/mc) ~ f (Pz, n) 
n = 0  - - c o  

1 mC 2 H c p~ 

P[I -- 8~2 Zc,3 d (p=/mc) ~ -  f (Pz, n). 
n = 0  - - c o  

(5.16) 

(5.17) 

On the first look it might  be deduced that  P• 2 and PI/ocH. However ,  since H 
also appears  inside the integrals the functional  dependence of  P on H is ra ther  com- 
plicated and it will be discussed later. The energy density U and the particle density 

N are obta ined in the usual manner  as follows: 

U = 2 2 2 (E - mc a) f (p=, n) (5.18) 
Px Py Pz 

co -boo 

1 mc2H Z f g - m s  d(p:/mc) (5.19) 
U -  4n 2 ~3 c Hq mc 2 

n = O  --0:3 

oO +CO 

N - &z 2 ~ Hq f (p=' n) d (pJmc). (5.20) 

n = 0  --CO 

These the rmodynamic  functions appear  to be complicated,  but  they can be simpli- 
fied considerably by not ing tha t  there is a degeneracy between the levels n, s =  + 1 
and  n + 1, s = - 1. This amoun t s  to saying that  all the levels are doubly degenerate 
except the one with n = 0. 

co oo 

(x, . ,  0) (5.21) 
n=l 0 

[ f x2f (x, O)dx Z f (x'n~x2dx] 
Pz= =eoO �89 e (x, O, O) + e (x, n, O) J (5.22) 

0 n = l  0 

co co 

U=UoOf  f f(x,O) (x,O,O)dx+ f 
0 0 

oo co 

N = N ~  f f (X'O) dX'~ n = l  ~ "  f f ( x , , ) dx ]  
0 0 

n, O) dx] 
(5.23) 

(5.24) 
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where 
f - t  (x, n) = 1 + exp {[~ (x, n, O) - #]/(T/To)} 
e (x, n, O) = 1 + x z + 2nO, 0 = H/H a, # = f i / m c  2 

1 lq'lC 2 

P o  = G o  - 7t.2 ~ 3  - 1 . 4 4 0 7  x 1024 erg/cm 3 

= 1.4407 x 1024 dyn/cm 2 

1 1 
No = ~ ~3 = 1.7598 x 103o cm -3 

rc }~c 
T O = mc2/k = 5.903 x 109K. 

(5.25) 
By means of the following transformations (CC68b) 

2 1 + 2nO V = x/a n a n = 
(x, n, o) = an (1 + v2) 1/2 

the equations of state can be expressed in terms of the following functions : 

oo 

f f ( l ~ ,  T ,v )  C1 ( r '  #) = 1 , ~  dv + 
0 

oo 

C2(T, p) = ~fO*,r,v)dv 
0 

oo 

C3 (T, #) = f (1 + v2) 1/2 f (1~, T, v) dv = C1 (T, I*) + C2 (T, #) (5.29) 

0 

oo 

C4 (T, #) = f f (#, T, v) dv 
0 

where 
1..l_v2 /, t 

f ( # , T , v ) =  l + e x p  T/To " 

The results are (CC68b) 

P~,, = Pyr = PoO2 ~ n C1 
I1=1 

(5.26) 

(5.27) 

(5.28) 

(5.30) 

(5.31) 

[ ~ 2 C2 (T/a., #/an)] (5.33) P= = PoO ~ c~ (T, ~) + a11 
n = l  

U = Uo 0 �89 C3 (T, #) + an C3 (T/a11, **/a11) (5.34) 
n=l .  

N =  No 0 [-} C4 (T, # ) +  11=1 ~ a11 C4 (T/a11, #/an)] . (5.35) 

(T/a11, ,u/a.) (5.32) 
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The Ck functions are average values of dynamic variables of a one-dimensional gas. 
C~ (T,/~) is the average value of E -1 where E -1 =(1 + v2) 1/2 is the total energy of 
a one-dimensional particle of unit mass and momentum v. C2 (T, #) is the average 
value of v dr~dE whose statistical average gives the pressure of a one-dimensional 
gas. C 3 is the average of E and C4 is the average particle density (in appropriate 
units). The properties of a magnetized Fermi gas therefore are closely related to those 
of a one-dimensional gas. This is intuitively clear since an electron in a magnetic field 
is quantized in energy in the J_-direction and moves freely only in the I]-direction. 

The properties of the Ck functions have been studied extensively in the general case 
of a Fermi gas [CC68b]. No simple inversion formula expressing T and # in terms of 
Ck's is known. In the following we will study 2 cases, the non-degenerate and the 
degenerate case. 

In the nondegenerate case the factor 1 can be neglected in the denominator of the 
integrand of the Ck's. Since the relativistic case is always marked by some degree of 
degeneracy (because of pair creation at relativistic temperatures) we will consider 
the non-relativistic case, v ~ 1. In this case (#' = # -  1) 

and 

f (/~, T, v) = exp [kt'/(T/To) ] exp [ -  v2/(2T/To)] 

oo 

C 1 (T, #) = f (1 + v2) a/a exp [g'/(T/To)I exp [ -  v2/(2T/To) ] dv 
0 

- , j ~ r / 2 r o  exp [la'/(T/To) ] 
oo 

C a (T, #) = f v 2 exp [#'/(T/To)] exp [ -  v2/(2T/To)] dv 
0 

= QcTI2To) t/2 (T/To) exp [kt'/(T/To)I 

(5.36) 

(5.37) 

(5.38) 

oo 

C3 (T,/~) ~- f (1 + �89 2) exp [la'/(T/To) 1 exp [ -  v2/(2T/To)] dv 
0 

= (TrT/2To) I/2 (1 + T/2To) exp [#'/(T/To) ] (5.39) 

C4 (T, #) = Ca (T, p) = (~zT/2To) 1/a exp [#'/(T/To) ] . (5.40) 

We therefore find: 

Pxx = P , ,  = PoO a n (~zT/2Toa,) 1/z exp [(#To/T ) - (Toa,/T)]. (5.41) 
n = l .  

In the non-relativistic case T ~  To and the requirement of non-degeneracy implies 
/~To -~ T. Let us consider the case nO ~ 1 so that 

a,, = (1 + 2n0) 1/2 ~ 1 + nO ~- 1. 
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Then 
Pxx = Pyr = Po 02 (nTI2To) ~/2 exp []2'I(TITo)] i n exp ( -  nOTolT ) 

n = l  

= Po Oz (nTf2To) 112 exp []2't(TITo) ] exp (OTolT) [exp (OTolT) - 1]-2.  

Similarly (5.42) 

{ 1 e x ~  T~)exp(0T~ 1 }" (5.43) P~z = Po0 (n/2) 1/2 (TITo) 3/2 exp (]2TolT) 2 + 

The internal energy density is a little bit more involved. Note that a, 2 = 1 + 2nO and 
a~ ~ 1, hence 

g/go = 0 t�89 [C 3 (Z, ]2) - C4 (r ,  ]2)] 

r 

k. 

+ ~ [a 2 C3 (T/a., ]2/a.) - a. C4 (T/a., ]2/a.)]~ 
n = l  ) 

~- 0 x/~ (T/2To) 312 exp (]2'To~T) 

x { �89  [exp(OTo/T ) - 1 1 - 1 +  2x/~ Too exp(OTo/T) } 
r Eexp -- 13 2 

Analogously (5.44) 

N = NoOx/Tr(T/2To) exp []2'/(T/To)] [�89 + {exp (OTo/T) - 1}-1].  (5.45) 

From quantum statistics the ratio of particles in states separated by an energy AE is 
e x p -  (AE/kT). The energy separation between adjacent Landau levels is Omc z and 
AE/kT becomes OTo/T. When OTo/T>~ 1, most electrons are in the ground state, that 
is, the state of one-dimensional particle with no _L motion. Dividing Equation (5.44) 
by (5.45), we then find that the heat capacity per particle, c~ = U/N, approaches �89 
in the limit OTo/T>> 1, as expected from the law of equipartition which states that each 
degree of freedom is associated with an energy of �89 In this limit Pxx and Pyy also 
vanish, to the order exp ( -  OTo/T) as expected from the behavior of a one-dimensional 
gas. 

A. DEGENERATE CASE 

From the expressions (5.32)-(5.35) the 'equivalent' Fermi energy of the state is 
p/a,. The criteria for degeneracy of the n state is (]2/an- 1)>> kT. As n increases, this 
inequality becomes weaker and weaker. Therefore, at a given temperature the higher 
states are always less degenerate. 

Simi!arly (CC68b) 

C 2 (0 ,  ]2) ---- C 2 (]2) = �89 (]22 _ 1)1 /2  _ �89 I n  []2 Jr  (]22 - 1) 1/2] 
= �89 (]22 _ 1)1/2 _ �89 C1 (]2) (5.46) 

C3 (0, ]2) - C3 (]2) -- �89 (]22 _ 1)1/2 + 1 in []2 + (]2z _ 1)l/1] (5.47) 

C,  (0, ]2) - C4 (]2) = (]22 _ 1)1/2. (5.48) 
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TABLE I 

C~(~). 

1 0 0 0 0 
1.25 0.69315 0.12218 0,81532 0.75000 
1.5 0.96242 0.35731 1.31974 1.11803 
1.75 1.15881 0.67722 1.83603 1.43614 
2.00 1.31696 1.07357 2.39053 1.73215 
2.5 1.56680 2.08071 3.64509 2.29129 
3.0 1.76275 3.36127 5.12401 2.82843 
3.5 1.92485 4.90726 6.83210 3.35410 
4.0 2.06344 6.71425 8.77769 3.87298 
5.0 2.29243 11.10123 13.39366 4.89898 
6.0 2.47789 16.50930 18.98718 5.91608 
%0 2.63392 22.93175 25.56567 6.92820 
8.0 2.76866 30.36469 33.13335 7.93725 

10.0 2.99322 48.25276 51.24598 9.94987 

In  Table I the functions C k are given for 1 ~< # ~< 10. It  is easy to see f rom the definition 

of  the Ck functions that  Ck (g) = 0 if # < 1. Therefore the sum in Equat ions (5.32)-(5.35) 

terminates at s such that  

as < # < as+ 1. (5.49) 

Physically this means that  energy levels up to n = s are occupied and all levels above 

n = s + 1 are vacant. The last level to be occupied is given by the criterion 

j~2 - -  1 
s -  or # = [ 1  +2(H/Hq) s] I/z (5.50) 

2H/H a 

Because each time when # exceeds a s an extra term is added to the sum in the 
equation of  state, discontinuities in the derivatives o f  thermodynamic  variables exist 

and at a~=/~, a ' t ransi t ion '  takes place (see Figure 2). These discontinuities are 

associated with the behavior  o f  the density o f  states which also shows such dis- 

continuities in the derivatives, as shown in Figure 3. 
In  particular when #~< (1 +2H/Ha) 1/2, only the first term in the sum appears and 

such a gas behaves as a one-dimensional gas. In  this case the L-stress vanishes. At  

H/H a = 1, the critical density for  transition into a one-dimensional gas is approximate-  

ly 10 6 g/cm 3. A n y  finite temperature will destroy this one dimensional behavior, 

however. F r o m  the general expressions (5.32)-(5.35), it is easily derived that  if 

degeneracy prevails, the residual L-pressure is largely due to the state n = 1 and is 
given by 

Pxx = P,,  = ( 2~3) - ' / 2  (HIHa)2 (mc2lX ) -I T/To -}'/2 
1 + 2ff/HJ exp (--  A) 

T A / T  o - (1 + 2H/Ha) t/2 - p. (5.51) 
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Fig. 2. Functional dependence ofPx=/P~, P=/N, Px~/Non N/No for the degenerate case at H/Hq = 1. 
The corresponding functions for a Fermi gas are also shown for comparison. 
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6. Radiation Processes in a Magnetic Field 

(1) Synchrotron Radiation. In a magnetic field an electron can make a transition 

from one quantized orbit to another, emitting a photon: (if the energy of the photon 
exceeds 2mc 2 pairs may be emitted): 

e -  ~ e-  + y. (6.1) 

Such a process is strictly forbidden in the classical case. This radiation process is 

called 'synchrotron radiation' because it was first studied in the design of electron 

synchrotron accelerators. Equation (6.1) remains the limiting factor in designing 

circular electron accelerators. In nature, synchrotron radiation from energetic 

electrons in relatively weak fields is the main source of radio emission (and in some 
cases also of optical and x-ray emissions). 

(2) Bremsstrahlung Process. An electron collides with an ion and makes a transition 
from a state n to another state n' (n = n' and n # n' are allowed). 

e;  + (Z, A) - ,  e;, + (Z, A) + (6.2) 

This radiation process emits a continuum as in the field free case. The bremsstrahlung 
process takes place in a dense medium and the effect of the medium on the emission 
process cannot be fully neglected. This problem is discussed in greater detail in 

Section 12. The rest of this section will then be devoted to the discussion of the 
synchrotron radiation process. 
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A.  S Y N C H R O T R O N  R A D I A T I O N  

According to the eigenvalues of electrons in a magnetic field (Equation (3.5)), the 
frequency of synchrotron radiation, v, is given by the equation: 

hv = E (pz, n)  - E (p~, n ' ) .  (6.3) 

Therefore synchrotron radiation in a homogeneous field is emitted in the form of 
discrete lines, but if the field varies by a factor of two in the emitting region these lines 
are smeared out into a continuum. However, the lowest frequency of this continuum is 
given by n = n' + 1. If we consider the relativistic case with large values of n then 

E (p':, n) - E (p':, n') 1 HII-lq 101o 
v = h - h E l m c  2 mc2 = 2.8 x H y - t  (Hz) (6.4) 

where y =E/mc 2 and His  in G. 
For  example, at H =  l 0  6 G and 7 = 10  6 ( 1 0 1 2  eV electron) the minimum frequency 

Vm of emission is 3 x 10 l~ Hz and the corresponding wavelength is 1 cm. vm increases 
with decreasing n, electron parallel energy (Pz), and with increasing H. For example, 
the energy gap between the ground state n = 0 and the first excited state n = 1 at a 
field of 1012 G is approximately 50 keV. 

As discussed earlier, according to the field strength and the electron energy and the 
rate of emission, synchrotron radiation is studied in two domains: 

a. The Classical Relativist ic Domain.  

This is the regime encountered most frequently in astrophysics: a large electron energy 
(7 >/10a) and a low field ( H <  10 .2 G). Under this circumstance an electron loses a 
negligible fraction of its perpendicular kinetic energy in each orbit. That is, the mean 
lifetime of the electron against losing its kinetic energy, -c, must be much larger than 
the period P = co- 1. As we will show later, this condition is fulfilled if 

(e2/hc) 7 2 1 

or (6.5) 
72H ~ 6 x 1015 

For  example, at y = 106 the electron no longer radiates according to the classical 
theory when H >  103 G. At 7 = 10 s the limiting field is only 10 G, and at H =  10 . 6  G 
(galactic field) an electron no longer radiates classically when y > 1011 (1017 eV). 

When (6.5) is satisfied, the 'radiation reaction' is negligible and the rate of emission 
is given by classical electrodynamics, using the Lienard-Wiechert potential. The rate 
of emissions has been discussed extensively previously. For completeness we give the 
results below. We will first give the general quantum mechanical expression for the 
spectral distribution of the emitted radiation and then some approximate expressions. 
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Using the exact wave function of a relativistic electron in a magnetic field, Klepikov 
(K54) first performed the computation of the intensity in the case where the sum over 
the initial and final quantum numbers can be approximated with an integral. The 

result turns out to be (per unit distance) 

3c~ mc z X X 2 
= - -  ~ '  (x ,  y )  (6 .6 )  

I ~2 yc 2 + 3 x E  

E H ( 3 x E ~  -1 
X -- y = hv o~ = e2/hc 

mc 2 Hq \ 2  + 3xJ (6.7) 
3 

Jd  (x, y)  = Z "g{, (hv/E) J~ (x, y)  
i = 1  

~ , ( x )  = 1 + (1 - x) -2  i = 1 
= 2 ( l - - x )  - t  i = 2  
= I x ( I - - x ) - 2 ] 2  i = 3  

(6.8) 

ao 

J1 (xy )  = f ds cosh 5 sK~/3 (t) 

0 

oo 

Ja (xy)  = f ds cosh 3 s sinh 2 sK2/3 (t) 

0 

oo 

J~ (~y) = f 
0 

(6.9) 

ds cosh s sKZ/a ( t ) ,  t = y cosh3 s [2 + 3x (1 - y ) ] - * .  

The structure of Equation (6.6) is quite complex and it is hard to compare it with the 
classical expression 

I - 2 ~  ~ c E  3x 

where the function k (s) is defined as 

co 2.14 z 1/3 z ~ 1 

k (z) = z I dxKs/3 (x)  --+ 
d z 1.25 zl/2e-Z z > 1 

(6.11) 

(K, (x)  is the McDonald function.) Its behavior can be seen in Figure 4. 
There is however, one regime, i.e., when 

hv ~ E (6.12) 

in which the complex mathematical nature of Equation (6.6) can be reduced to the 
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following simple formula 

I - x/3e mc2 x (1 - h v / E )  k (2s) 
2re x c E 

, /3x xhv( ) S ~  =+3x(1-y)  1+ 

(6.13) 

which is almost identical with the classical expression Equation (6.10). The explicit 
reduction of Equation (6.6) to Equation (6.13) is done in Erber article (E66). One 
final remark about Equation (6.6) is that its validity is related to the following in- 
equalities being satisfied: 

? = E / m c  2 > 1 ? - hv/mc= >> 1. 

The total energy dissipated per unit distance Al was obtained by Klepikov by using 
the general expressions (6.6). The result is 

A E  rnc 2 
A1- = ~c~ - ~  g (x) (6.14) 

J'x z (1 - 5.95x) x < 1 (6.15) 
9 (x) = ).0.556 x 2/3 x >> 1. 
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The total power of emission is given by 

dE mc2 ( ~ )  2 fi2y2 fi2 E2m2c4 
dt - 2~ h mc 2 = F 1 - fl~ - F m2c4 (6.16) 

with 
mc2(H~ 2 

r = \ H d  "e2" 

Integration of Equation (6.16) gives the variation of the energy with time, i.e., 

E / m e  2 = coth (Ft /mc 2 + k ) .  (6.17) 

As t-+ 0% E ~ m c  2, as it should because the particle is completely stopped. The value 
of the constant k is easily found to be 

/c = �89 in ?~ + 1 (6.18) 
70 - 1 

with 

70 = (E/mcZ)t=o �9 (6.19) 

The half-life of the electron, -c, is defined by the equation 

eoth (Fz /mc 2 + k) = 170 

and it is given by 

For 7o >~ 1 

~ ~- t~/~o (6.21) 

i.e., 

z =  ~o~ h \ H J  70 �9 (6.22) 

At 7o -~ 10 6 and H =  103 G, the lifetime is only 10 -5 sec, corresponding to a mean 
free path of 3 • 10 -s  cm. If we now require that v should be greater than the period 
co L where co L is given by Equation (3.3), we easily obtain 

ez Tz H - - < 1  
hc H~ 

o r  

72H < 6.1015 

as discussed previously [see Equation (6.5)]. 

(6.23) 
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b. The Low Quantum Number Region (CFC69) 

When the energy of the electron is small, only the lower quantum states are occupied. 
The transition between neighboring states are then important.  The nature of the 
synchrotron radiation is very different from that of the case of large quantum number n. 

The radiation rate has been computed in analogy with the general case. The transi- 
tion between two states n and n' gives rise to a photon of energy 

 -cos0p /mcr { }sin 0(nzn') "21 
h ~ = m c 2  ~5~2~ L ~ -  ~-(~"-c~ _1 (6.24) 

where e is the energy of the initial state: 

= Elmc 2 = [1 + (pzlme) 2 + 2nHIHq] 1/2 (6.25) 

n' is the quantum number of the final state, and 0 is the angle of the emitted photon 
with respect to the axis of the magnetic field. 

It  may appear that the emission gives rise to a continuum on account of the 0-de- 
pendence. In the limit H/Hq~ 1 we can expand Equation (6.24) with the following 

result 
hcolmc 2 = (n - n') H/H e + 0 [(hco/mc2) 2 cos 2 0] (6.26) 

which corresponds to a narrow line emission of width ~- (hco/meZ)2me 2. In the case 

H/Hq >> 1 the line is smeared into a band and the wavelength of the emitted radiation 

depends on the angle of emission. 
The radiation rate (radiation energy per unit volume per time) is 

with 

i (n) = ,~ L4~ ~ ~ 

-t-co 

y d x f ( x ) 1 2 y s i n O d O [ l - f ( x ' ) ]  
--co n' 0 

wZe'F (n, n', w, O) 
X 

5' - (x - w) cos 0 
(6.27) 

x'  = x - w cos 0, x = pz/mC, e z = 1 + X 2 + 2nH/Hq. (6.28) 

w=hco/mc 2 is given by Equation (6.24). f (x) is the usual Fermi distribution. The 

function F(n, n', w, O) has the following form 

V (n, n', w, 0) = [~1~,,- ~,n (Y) - ~2;o' , ,-~ (2)] 2 

"~- COS 2 0 [(.O1][n,_ 1, n ( 2 )  -}- (D2J[t,', n - 1  ( 2 ) ]  2 

+ sin 2 0 [c%I,,_ 1, ,-~ (Y) - ~4I, ',. (y)]2 (6.29) 

- 2 sin 0 cos 0 [colI,,_ 1., (Y) + c~ , -1  (Y)] 

• [~oj . ,_ , , ._~  (2) - o ~ j . , .  (2)] 

y = w 2 sin z 0I[4 (H/Hq)] 
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where 

@ Z - l + 2 n H ~  ) 

o) 1 = 1 [ ( 1  - I -  S'/~') (1 - -  S/?])] 1/2 
X {(1 -- W COS 0/~')  1/2 -~- SS' (1 -1- COS 0/8') 112} 

~'2 = � 8 8  -- S'I~') (1 + ~ / , ) ]1 /2  
X {~S' (1 --  W COS 0/~')  I/2 + (1 + W COS 0/~')  I/2} 

,O~ = � 8 8  + s'l~') (1 + s l ~ ) ] i / 2  

• { ( 1 -  

o~, = �88 [ (1  - s ' l ~ ' )  (1 - 
x {(1  + 

w cosO/e') a/z - ss'  (1 + w c o s O / d )  1/2} 

s/~)] I/2 
w cos O/e') ~/2 - ss'  (1 - w cos 0/e')~/2}. 

(6.30) 

The I~p (x) functions are defined in the Appendix I. 
Equation (6.30) is too complicated to be analyzed in full generality. We will confine 

ourselves to the non-relativistic case and to the transition n = 1 to n'  = O. 

In this case the various co k simply become 

co 1 = co 3 = co 4 = O, co2 = � 8 9  (6.31) 

The function F(1, 0, w, 0) reduces to 

H (1 + cos z 0) lo 2, --= 1 H (1 + cos 2 0). (6.32) v(1, O,w,O)=~Hq o fi~ 

For the non-degenerate case we can take f ( x ' )  < 1. The first parenthesis in Equation 
(6.27) is therefore seen to be the particle density N e. (see Equation (5.20)). The final 
expression is simply 

I (1, 0, 0) = �89 ~ -  m c  2 N e w  2 (1 + cos 2 0). (6.33) 

c. O t h e r  R e l a t e d  S y n c h r o t r o n  R a d i a t i o n  P r o c e s s e s  

In a magnetic field, there are a number of processes involving free photons and free 
electrons which are normally forbidden. Most of these processes are of theoretical 
interest but may be important in astrophysics. These processes have been discussed 
by Erber (E66). They are: 

(1) Pair production by a free photon (of energy MeV) in a magnetic field: 

y ~ e - + e  + " 

This process is normally forbidden in the field free case but is allowed here because 
electrons in Landau states behave kinetically as one-dimensional particles. The life- 
time of the process is given by 

= l /c  
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where (when H~Hq) 

I ~ H  
1 - t  _ 

22cHq 
with 

l h v H  
r ( x ) ,  x -- 

2 mc 2 H~ 

T(x) - -  0 . 6 0 x  - 1 / 3  x >~ 1 

= 0 . 4 6 e x p [ - ( 4 / 3 x ) ]  x ~ l .  

The maximum of the function T(x) is at x ~- 6 at which T(6) = 0.1. At H =  10- s H~ an 
hv = 6.106 eV, the mean free path l of  the photon is -~ 1 cm or z -~ 10-1 o sec. 

(2) Photon splitting 

~ + ~ .  

This process has been computed by Skobov ($58) using Schwinger's Green's 
function which is valid only for H~Hq. The exact form of the Green's function is 
discussed in Appendix II. In this case the attenuation coefficient is computed to be 

= 3 (1447r) z ~c mc2 " 

(See however Adler et aI., 1970, A70.) 

7. Neutrino Processes in Magnetic Fields 

It  is known that neutrinos can strongly dissipate thermal energy of stars at later stages 
of stellar evolution (Ch66a, CCFC69, R65). Most neutrino processes in the field free 
case also operate in the presence of a magnetic field, but in addition, those photon 
emission processes which are allowed in the presence of a field, can also emit neutrinos 

via the (ev) (ev) interaction. 
As in all other cases neutrinos are emitted in pairs. This is due to the nature of the 

(ev) (ev) interaction. In the following we list a number of examples of  neutrino 

processes in a magnetic field. For a summary see Canuto (C71). 
A. Examples of processes allowed in the absence of field and in a field: 

(1) Bremsstrahlung process e -  + (Z, A ) ~ e -  + (Z, A) + v + 
(2) Photo neutrino process e -  + 7 ~ e -  + v + 
(3) Electron pair annihilation process e -  + e + ~ v  + 
(4) Plasma neutrino process 7 ~ v  + 

(although this process in a vacuum without a field is forbidden, it is still 
allowed in a field. It  is analogous to the photon splitting case (see B (2) 

below). 
B. Examples of processes only allowed in the presence of a field. 

(I) Synchrotron process e -  ~ e -  + v + 
(2) Photon splitting process 7 ~ v + ,7, 7--* ~ + v + f 
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One thing worth noting in the precence of a field is that cross-section loses its 
meaning. In a field free case, particles can move freely in any direction and a cross- 
section can be defined such that a beam of particles of density N travelling with velocity 
v striking a group of stationary particles of density N2 has a reaction rate proportional 
to N, N2 v, where the constant of proportionality is the cross-section o-. In the presence 
of a field the motions of particles are confined and there is only one velocity component 
in the usual sense. Therefore cross-section has no physical meaning. On the other hand, 
the transition probability (which in the field free case is av) is well defined. In any 
case, in evaluating the energy loss rate (or other quantities of physical interest) one 
only needs av which is equivalent to the transition probability. We will give the results 
for the process (B.1). The result can be easily modified to compute (A.3). We start 
with the usual V-A type of interaction 

with 

S :  f d#x,LP (x) = ~ f [~e (X) Ok~le (X)] [~v (X) Fk@v (X)] d#x 

F k = 2-1/2gkO k (1 + 7s). 

The index k runs only for vector O k = 7 ,  and axial Ok=iTuy 5. The Oe(x) are the exact 
electron wave functions in a magnetic field given in Appendix I. Using the standard 
field-theoretical method one can then compute the neutrino energy loss 

d u  
=ZZ(E,- -EI)  f(E,)[1--f(EI) ] W 

dt i 

where the transition probability per unit time and volume Wis defined as 

[SI 2 
W -  

OT 

A. N E U T R I N O  S Y N C H R O T R O N  E N E R G Y  LOSS 

The neutrino luminosity for this process turns out to be (CCCFC70) 

where 

H 

n n' --oo - - ~  

1 1 g2 m c  2 

l o -- 6 (2rc) 8 ch 2 2 8 

dx' [e. (x) - e., (x')]  

1 

x f,, (x) [1 - f,,  (x')] f dQI (x, x', Q) 

0 

= 1.7475 x 10 I8 erg/cc sec 

(7.1) 

(7.2) 
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a n d  

I (x,  x ' ,  ~) 

q ~  

A 

B 

C 

D 

~(.I. ')  
t 

= q~ (A + oB) + q~ (q3C + qoG)  2 (7.3) 

= [ ~ .  ( x )  - ~ . ,  ( x ) ] 2  _ ( ~  _ ~,)2 
2 2 2 2 

(Dlq~ 1 -1- 0)2(]) 2 - -  4(,030)4q~3q~ 4 
2 2 2 2 

( D I ~  1 "JC (,02q~ 2 "~- 4(D3(-Og~3t~  4 (7.4) 
- m 3 ~  - o),4, 

= ~ ( n l n ' -  1) ~b z = @ ( n -  l l n ' )  

--- �9 (nln ' )  ~b4 = ~ ( n  - l l n ' -  1) 

= (hi n'!) -1/2 e -t/2 t "+"'/2 2Fo(  - n ' , -  n ;  - t - 1 )  
(7.5) 

= (2H/Hq)-I q2  (1 - 0 ) .  

A n u m e r i c a l  i n t e g r a t i o n  o f  E q u a t i o n  (7.1) w as  p e r f o r m e d  fo r  H/Hq= 1 a n d  f o u r  

d i f f e r en t  t e m p e r a t u r e s .  T h e  r e su l t s  a re  r e p o r t e d  in  T a b l e  I I  a n d  I I I .  T h e y  a re  u sua l l y  

l a r g e r  b y  a f a c t o r  o f  ~ 102 f r o m  t he  L a n d s t r e e t  r e su l t s  (L66)  w h i c h  we re  o b t a i n e d  

TABLE II 

08 (g/cm s) l(erg/cm 2 sec) 

T=5.9303 x 107K 
3.7146 0.26037 x 10 -1 
5.598 0.4998 
5.8417 x 10 4.054 x 105 
2.0736 x 10 ~ 1.9397 x 107 

T=3.7418 x 108K 
4.802 x 10 -1 1.2063 x 1012 
1.44 5.092 x 1012 
3.7146 2.107 x 10 ls 
5.598 3.7116 x 10 ls 
5.8417 x 10 1.2984 x 1014 
2.0736 x 102 2.5338 x 10 is 

TABLE III 

06 (gr/crn s) l(erg/cm s sec) 

T =  5 x 108K 
6.7082 x 10 -2 1.64071 x 1012 
3.7146 1.7649 x 1014 
5.598 2.675 x 1014 
5.8417 • 10 7.37 x 1014 

T =  9.3988 • 108K 
6.7082 x 10 -2 1.659 x 10 ~5 
3.7146 8.51 • 1015 
5.598 1.0586 x 1016 
5.8417 x 10 3.1804 x 1016 
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after integrating over all the quantum numbers n and n'; this procedure is valid 
only when the problem is quasi-classical, i.e., when the density is much higher than 

~6; this is surely not the case considered in the numerical analysis performed in 
(CCCFC69). Therefore the comparison with Landstreet results cannot be taken too 
seriously. In Figure 5 we report the region in the ~-T plane where the neutrino 
synchrotron process is important. 

10 

L~  

Neutrino synchrotron 
( H =101~ g a u s s ) ~ -  - - ' I ~  

sma neutrin K T 

. 1 I  . . / Pair Production 
..I neuzrlno 

0 I I 

7 8 9 10 
Log io T 

Fig. 5. Region describing the relative importance of the neutrino synchroton, plasma neutrinos, 
photoneutrinos, and neutrino pair processes. (L66) 

B. PLASMAN NEUTRINOS (CCC70) 

As seen in Figure 5 the plasmon neutrino process 

7 ~ e - + e + ~ v + ~  

is of primary importance at relatively low temperature and high density. This process 
has been repeated in the presence of a strong magnetic field (CCC70). For  the trans- 
verse decaying photon the neutrinos energy loss is given by 

where 

i Ok 6 
Q (0 = 0) = Ocop* do) (co _coc) z N~ [1 - Nz 23 f (co) (7.6) 

r 

2 4rce2Ne eH N~ = 1 cop co 2 , coc - (7.7) 
09 2 (D "q- COc ~ COP - -  FF/ /T/C 
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f (co) = {exp (hco/kT) - 1}-1 (7.8) 

1 lo ( ) 
- 12, (2n) 5 hc ~ cc sec ster/" (7.9) 

The lower limit co o has to be chosen such that Ne 2 < 1. Equation (7.6) is for pro- 
pagation along the magnetic field, 0 = 0. The plus or minus ( l=  1, 2) in the refractive 
index refer to ordinary (0) and extraordinary (X) waves. 

An analogous computation gives for 0 = n/2 

oo 

(20(0 ~/2) -oef = = Q v do) co+N0 (1 - Ng) f (co) (7.10) 
fOp 

N = 1 - co~lco~ (7.11) 

L i I i 

 o,5 oco, 
I • 

i0 ~~ 

T = I O ~ / j  

.O,T  =10 I~ 

T = I O  9 

f O , T = l O  9 

..~.H =j 
Hq 

~ _ j y T  = tO a 

tO -to 

- = 1 0  8 

~ ( ~ - ~ w ~  

l I0  I0  2 lO 3 I0 4 10 5 10 6 10 7 

P6 (cj/cc) 

Fig. 6. Energy loss per unit mass and unit solid angle vs 06 and different temperatures for H =  He 
and 0 = 0. As explained in the text the symbols O and X stand for ordinary and extra-ordinary modes. 

The dashed lines correspond to H = O. 
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10 I~ 

i I I I I I i 

I e~g 1 
Q ('~2) Lg.sec J 

H =  I 
Hq 

~ . / /  X ,T = 10  9 

., ~ \ \  / / / ~ - - - T  =10 9 

=10 I~ 

[ / ~  - ~ ~ T  = I O e 

, o - ' o  
I o~ IIii ~ 

Fig. 7. 

I0 
I I0  10 2 10 3 [0 4 10 5 10 6 10 7 

(g/cc) 

The same as in Figure 6 for 0 = n/2. The ordinary mode coincides with the H = O-case. 

co 

Q~ (0 = ~z/2) = 0o94 f d o  

r 0 

0) 8 

[ x l+(1-Nx 2) f(co) (7.12) 
( _ ~ ) 2  CO2 2 

- COp (7.13) N2=l-  092 2 2" 
- -  COp - -  (D e 

Equations (7.6), (7.10) and (7.12) were solved numerically for H=Hq for various 
densities and temperatures. The results are shown in Figures 6 and 7. The general 
conclusion is that a sizable effect can be found only for low densities and very high 
field, a situation not met in white dwarf or neutron star interiors. A different situation 
is encountered when one considers the longitudinal plasmon. 
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At 0 = 0 of the two possible dispersion relations 

(02  2 
= COp (7.14) 

(02  ~--- (02  

the first does not depend on the magnetic field while the second is purely magnetic 
field dependent and correspondent neutrino luminosity is given by 

Q (0 = O) = Q(0~ ((0c/#) 5 f ((0c/#). (7.15) 

At 0 = 7r/2 only one dispersion relation is important 

2 2 (7.16) (02  ~ (02  = (0c  -~" (0p  

15 
10 

10 I~ 

105 

io -s 

-10 
10 

10 -ts 

10 -20 

[-e~g ] / "', ~_q=,o-~ 
Q L g-secj / , "  

/ /  \ 
/ 

/ 
/ 

/ 
/ /  

/ 

/ / / /  \ 
/ I  # \ \  

/ /  / \ / 
i / 11 \ \  

/ / / /  
\ 

, /  \ T= Io IO I ~ T = [09 

I 
L 

I 
I 

T=I0 8 

10 I0 z 10 3 

ps(g/cc) 

T=IO 9 

I I 
10 4 10 5 

T = I 0  I0 
I 

IO  6 10  7 

Fig. 8. Energy  loss per unit  mass  and unit  sol id angle  at 0 = 0 as a funct ion  of  Q6 and different 
temperatures.  The  solid curve  refers to the m o d e  co = coe and H/Hq = 102. The dashed curve refers to 

the m o d e  co = roy which  is independent  o f  the field. 
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i0 ~5 

iO i~ 
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io -~o 
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QI- ~g ] H = l  
L g - ~ J  / / ' /  \\\\\ H q " 

/ \ 
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/ /  l 

. / ...- \ __T = l n l  0 ~ I 9 
/ /  / - ' "  \ ~ /Y =10 
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r ~ l O  8 I T = I 0 9 ,  ' .T = l o i o  

I I 

r , I, r r l p I 
I0 10 2 I0 s I0 r 10 5 IO 6 I0 ~ 

~ ( g / c c )  

Fig. 9. Same as in Figure 8 for H=He. 

since the other gives 

~o 2 = O. 

The neutrinos luminosity turns out to be 

Q ( o  ~ /2 )  - 2 , = O.o~,o~h (CO~ 7 2 = + ~CO c) f (COb). (7.17) 

Since O)p >> COc, COh ~ COp and therefore no great difference is expected from the case with 
H = 0 ,  at least at 0 = ~ / 2 .  In Figures 8 and 9 we reproduce the neutrinos luminosities 
(Equation 7.14) for H =  10- 2 Hq and H =  Hq. It is important to note that this magnetic 
field dependent mode survives at those densities at which the free field case is exceed- 
ingly small. 

8. Neutron Beta Decay 

Because of  the Landau levels the electron final states are strongly modified. Strictly 
speaking, all states of  the neutron and the proton are also affected by a field. However,  
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the effect of  the field is proportional to m 2. For  fields H ' ~ 1 0 1 9  G, the states of the 

proton and neutron are not affected. 
The neutron mean life -c in a magnetic field has been considered, but the most 

complete work is due to Fassio-Canuto (FC69). She considered two cases: vacuum 
and a highly degenerate magnetized state. The general result is that the neutron mean 
life in a magnetic field begins to be significantly decreased when the field strength is 
greater than 101 o G. The physical reason for the decreasing of the lifetime lies in the 

fact that the phase space for a one-dimensional particle is dpz (instead o f p  2 dp) and 

4 , 0 1  I I I 1 I 

3.0 

N(E) 

2.ol- I \ 1  I /I L/ I 

I 

I 

1.0 
( ~ =  ~ 

=0 

Fig. 10. 

0 .0  I I I r I f I I ' ~  
1.0 1.2 1.4 1.6 1.8 2 .0  2 .2  2 .4  

E 

The  fl-ray spec t rum N(e) for O = 0, 0.1, 1 with O =H/Ha, Hq =4 .414  • 10 la G. 

does not vanish at zero electron energy. This is seen in Figure 10 where the differential 
spectrum, N (e) de is shown with and without magnetic field. The Fermi type spectrum 
vanishes at p =  0, whereas the one-dimensional magnetized electron does not. This 
increases the space phase and as a consequence decreases the life time. The discon- 

tinuities are due to the density of  final states (Figure 3). 
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The expression for  the neutron decay half-life z is 

N A 

H (1 - �89176 d8 [1 - f (e)] (e 2 _ a2)i/z . . . .  

n=O a n 

where 
2 A m-*(M,, v . )  

rn5c 4 
( f ) - i  = g2(1  + 322 )&r3h 7 

(8.1) 

(8.2) 

where 2-gA/g  v is the ratio of  the axial and vector coupling constant  and N must  be 
chosen in such a way that  e 2 -  a 2 >  0. In  the nondegenerate case f ( e )~  1. The in- 

tegral can be exactly integrated and we have, with x -  A/a, 

N "'qH ~ (1 �89 3 z " - t  = ( ? ) - 1 7 u  r- - a,, 

. = o  (8.3) 
x [ { ( x  2 - 1)1/2(2 + x 2 ) -  x l n ( x  + x / • - -  1)] 

N = (A 2 - 1)/(2H/Hq). 

0.65 

0.63 

0.61 
"g 

O.59 

0.57 

0 .54  

0.52 

0 .50  i f 
10-3 10-2 10-1 

Fig. 11. The neutron mean life in vacuum normalized to a constant factor f', Equation (8.3), is 
plotted as a function of the magnetic field. The straight line is the neutron mean life when H = 0. 
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When  
A 2 < 1 + 2H/Hq 

only the first te rm contr ibutes  and  the resul t  is easily seen to be 

z - a  -- 1.3 ( q ) - t  H . (8.4) 

A t  higher  fields z ~ H - 2 .  The l ifetime z (Equa t ion  8.3) has been compu ted  numerica l ly  

as a funct ion of  H/Hq. I ts  behav ior  is shown in F igure  11 where we also give the free 

neu t ron  lifetime. As  said before,  the effect o f  the magnet ic  field becomes apprec iab le  

only at  fields greater  than  10 l~ G. As the densi ty increases degeneracy appears .  In  

the comple te ly  degenerate  case we have 

1 - f ( s )  = H (~ - # )  (8 .5 )  

where H is the Heavis ide  step funct ion.  As a consequence the lower l imit  in Equa t ion  

0 .90  

0 .86 

0.82 

0 78  

T 

0.74 

0 70 

0.66  

0.62 

0 .58  

I # I 

@ =0.5 

=1 

0 .54  , I 
10 -2 10 -1 1 

Pe 

Fig. 12. The neutron mean life normalized as in Figure 11 is plotted vs 06 -~ 10 -~ Q//ze (0 in g/cc) for 
different values of O ~ H/Ha. 
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Fig. 13. The same as in Figure 12. At 0 -~ 0* -~ 10 7, the neutron mean life becomes infinite, i.e., the 
neutron becomes a stable particle. 

(8.1) is changed to/ t .  The result is 

N 

- "7 "s H (1 - �89 a. { ( y2  _ 1)1/2 
(~)Do~ ~ H. 

?t=O 

• [ x ( x - y ) + ~ ( 2 + / ) ] - x l n [ y + ( y 2 - 1 ) ' / 2 ] }  (s.6) 
with 

y - #la, N =-#2- 1 
2H/Hq" (8.7) 

In  Figure 12, and 13 the lifetime is shown as a function o f  the density for some 
values o f  H/Hq. As the density approaches the values ~* at which the Fermi energy is 

equal to A, the neutrons become stable and the lifetime is infinite. As in a vacuum, 
the effect o f  the magnetic field is that  of  lowering the neutron lifetime. Some astro- 

physical consequences of  this shortening have recently been considered (G69). 
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9.  D i e l e c t r i c  T e n s o r  for  a Q u a n t u m  P l a s m a  

The dispersive character of a quantum plasma in a magnetic field has been the subject 
of numerous papers and an exhaustive list of references is found in a recent article by 
Green et  al. (Gr69). The usual classical analysis is based on the solution of the Boltz- 
mann-Vlasov equation for the distribution function. As discussed at length in Kelly's 
paper (Ke64) there is no unique way to treat the problem on a quantum mechanical 
basis. The reason is simply because no precise quantum counterpart of the classical 
distribution exists. An improved fully quantum-mechanical derivation has recently 
been achieved and studied in detail (Canuto and Ventura; CV71). The method 
employed by Kelly is based on the use of the Wigner function [BC62] 

f (r, p, t) = (Trh) -3 f exp (2ip.~,) 0(r  - Z, r + Z) d32 (9.1) 

where ~ (r, r', t) denotes the single particle density matrix. The Wigner function 
f (r, p, t) is shown to satisfy Boltzmann-Vlasov equation 

f (r, p, t) = fo (P) + f l  (r, p, t) (9.2) 

Oft  
O-t + v . V f t  + (e/c)  (v x B) Vvf 1 = - e lEa + (l/c) (v x B~)] Vvfo (9.3) 

with 
1 OA~ 

E t = Vq5 
c 0t (9.4) 

B t = V x A t 

where ~b (r, t) and A t (r, t) are the scalar and vector components of the self-consistent 
electromagnetic field felt by each electron. Introducing the Fourier transform of 
f l  (r, t)  and E t (r, t)  and using standard plasma physics techniques the general ex- 
pression of the dielectric tensor turns out to be 

e~ = (1 - CO2/CO2) 6~p - (CO~/COz) n~, (9.5) 

with (we only quote the components of n~ we shall need) 

n i t  = S E ( n J , / b )  2 p• {v• + nCOcf• 

nt2 = - n21 -- S [i (nJ ,  J~,,/b) p• {vzqllfll  + nCOcf• (9.6) 

n22 = S [(js P• {v •  ll + nCOcf• 

n33 = S [J~zpll {vllqllfll + vf_lvllnCOcf• 
where 

+co  

2 4 ene/m d3p[x] , c o c = e H / m c  , COp 
s i x ]  - ~ + qllvll + nCOo 

n =  - - 0 9  

fll = Ofo/OPll f •  = Ofo/t?p• b = q• c 

(9.7) 
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Jk is the Bessel function of order i. As customary in plasma physics, the wave vector 
q is taken as q =  (qx, 0, qll); on the other hand, the momentum variable is taken as 
p = (p• cos ~b, p• sin qS, P lI)" Having obtained the tensor e~ the dispersion relation is 
found by solving the usual equation 

det [c 2 (qZ6~p - q~qp) - co2e~p] = 0. (9.8) 

In order to evaluate the tensor n~p one still needs the equilibrium distribution fo  (P) 
given by Equation (9.1) where the equilibrium density matrix 

with 

0 (r, r') = Z wjqS* (r') ~bj (r) (9.9) 
J 

wj = {1 + exp [/~ (Ej - /~) ]}-1  

requires the use of single particle wave-function of an electron in a uniform magnetic 
field. For the Maxwell-Boltzmann case, wj is simply given by exp [ - /~ (Ej - /~) ] .  
Using the wave functions given in Appendix I, Kelly's result is the following 

tgh0 ( fl "~/2 [ /~P~I tgh0 p2 1 
f o (p z ,  p l t ) - - ~ \ 2 ~ 3 j  e x p - -  2n~- - mhcoc_] 

0 = �89 

(9.10) 

for the Maxwell-Boltzmann distribution and [w 2 =- (p~ + p2)/mhwc] 

o0 

2e 2 X Z fo (Pz, Pll) - Ne (2jzh)3 
n = 0  s =  _+_ 1 /2  

( - ) "  L, (2w 2) 
• 

1 + exp [ p /2M +/ ho c (n + s + 1) _ 
(9.11) 

for Fermi-Dirac statistics. Both f0  (p 11, P• are normalized in such a way that 

f fo ( P I [ '  P Z )  d 3 p  = 1 .  

With these formulae we are now able to study the propagation parallel and per- 
pendicular to the magnetic field. For the first case q• =0, qll = q and the result turns 
out to be 

1711 ~ /'/22 ~ n +  -[- n _  

n 1 2  = - -  / ' /21 = i(n+ -- n_) (9.12) 
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with  

- - -  + 0 co th  0 -T -  

o + coo m/ (co + coc) 2 
n F  

2nV+-~ = \ 2m (co +_ COc) ~ - - -  q2V.Z 
n = O  

n F  n F  

coo Z ' ~  
T e.  In jco + c~.V. 

q coo -- qVn] / 
n = O  n : O  

n ~  = 3q2 /mflCO 2 

//33 ~ 

n F  n F  

Z ( s )  = Z ~n (1 - -  S//)3/2/ Z O~n (1 - -  S//)  1/2 
n = O  n = O  

V2 = 2~ ( #  _ //~COc), 0~ n ~--- 2 ( ] -  - -  �89 

(9.13) 

(9.14) 

The  d i spers ion  re la t ion  (9.5) becomes  

602 2 (1 + / / 3 3 )  = COp (9.15) 
0.) 2 = q2c2 + 092 (1 + 2 n + )  

for  l o n g i t u d i n a l  a n d  c i rcular ly  po la r ized  waves. F o r  waves  p r o p a g a t i n g  p e r p e n d i c u l a r  

to the  magne t i c  field qa = q, q II = 0 the  resul ts  are 

2 q2hcoc (o2 
COp (A 1 - 4A2) co th  0 

81 1 = 1 092 2 "l- (1) 2 
- o9 c 2m 

2 iq2hc% co~ 
iO.)C9 o fop (A - A 2 )  cothO 

/~12 = - -  •21 = ~02 2 (.02 (/)2 1 
- co o m (9.16) 

2 
e)p 2 + q2hco o COp (3A1 _ 4A2) c o t h 0  

822 = 1 0) 2 2 2m co 2 
- -  (A) c 

cop 1 + A. = (co2 
833 = 1 - -  ~ 2  m f l [ ~  ~ COc 2 ' 

for  a B o l t z m a n n  gas. F o r  a Fe rmi  gas at  T =  0 K,  the c o r r e s p o n d i n g  dielectr ic t enso r  is 

2 q2hc % co2 
cop (A 1 4A2) 7J(hcoc/#) ~11 = 1 o)2 2 4- - co o 2m 0 ) 2  

2 iqZhcoc 2 icococ ~op cop (A A2) T(hcoJ#) (9.17) 
~:12 ~ - -  821 (02 2 (.02 0) 2 1 --CO c /TI 

2 q2hcoc 2 COp COp 
%2 = 1 C O z Y _  co c + 2m e~ 2 (3A1 - 4A2) ~(hCOc/#) 
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COp 2qZ,u 
e33 = 1 - ~ 1 + 3m(co~ ~ ~o2) z(hco~/#) 

nF nF 

7/(s) = 2 E ct.n (1 - s n ) l / 2 / Z  c~. (1 - sn) 1/2 . 
n = 0  n = O  

41 

(9.17) 

10. Transport Processes - Electron Conduction 

In general, transport processes may be classified into 2 categories: energy transport 
and material transport. Generally speaking, material transport often involves energy 
transport. The former includes radiative transport of energy and electron conduction 
and the latter includes convection and diffusion. 

While all these processes have been studied in the field free case, with certain ex- 
ceptions (in the non-relativistic low temperature case for ordinary solids) few of these 
processes have been studied in the case of strong fields. The problem of radiative 
transport has not been studied at all in the case of strong fields. 

The computation of the electrical conductivity is extremely important by itself 
because problems related to the decay in time of a magnetic field superimposed on 
a plasma depends on it. Using Maxwell's equation and Ohm's law, one can easily prove 
that the diffusion equation for a magnetic field Hi s  (J62) 

(c2) 
a t -  v2n (lO.1) 

where ~ is the electrical conductivity. Approximating V2H by H L - 2  where H is the 
field and L is the dimension of the field. Equation (10.1) yields an exponential solu- 
tion for the field H, i.e., 

H (t) = H (0) exp 4no.L2 t 

which shows that the initial configuration of H will decay in a diffusion time z given by 

4haL 2 
" C - -  

C 2 

The problem of electron conduction in the absence of a field has been studied since 
1932, and the most recent computation has been given by Hubbard and Lampe 
(HL69) and by Canuto (C69) for the non-relativistic and relativistic case respectively. 
These works include the ion-ion correlation to eliminate the forward divergence 
problem of the Coulomb scattering cross-section. The results of Hubbard-Lampe and 
Canuto are believed to be, up to the time of this article, the best electron conductivity 
in the absence of a field. The results reported below wdl be compared to the values of 
these authors. 
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In classical theory of conductivity it has been shown that the ratio of thermal 
conductivity to electrical conductivity is given by the Wiedeman-Franz law, which 
states that 

7~ 2 k 2 

~176176 = 3 e 2 T 

where ~th is the thermal conductivity and ~ is the electrical conductivity defined 
(C69) (06-0  x 10 -6, 0 in g/cc) 

,,o = ,~oC ( d / 3 )  
~7 o = -~ [(2~z) 3 ; , i :~ZWJ - a  (c~Zh/mc z)-' 

G(x) = x(1 + x) -1/z { f  dO sin0 (1 - cos0)[2 + x(1 + cos 0)] 

0 

2c~ xW 2 (1 }-1 x [ x 0  - c o s 0 )  + - + x ) , 2 ] - 2  ~ ( x ,  0) 
TC 

oo 

q~ (x, 0) = 1 + 3 f ds (s~)-x sin (s~) 9 (s) 

0 

Nions = 2.69 #~/3#e a/S (1 -- c o s  0 )  1/2 , ~ / ' i  - 
O 

Hi = A ,  # ~ l  = Z / A .  

( lO.2)  

( l o .3 )  

(10.4) 

(10.5)  

The function g(x) is the pair-correlation function which takes into account the ion- 
ion interactions. Its value depends on a parameter F -  1 = (z%2/KT) [(4n/3) (~i/f2)] ~/3 
which measures the strength of the ion-ion interaction. For high values of F (F>> 1) 
the function g (x) is only known numerically. Tables of the function G (x) are given 
in (C69) for different values of Z and F. 

Since in a strong field o- is modified by the field itself, it is necessary to know o- in 
order to estimate -c. Canuto's conductivities have a limited range of validities. When 
the proton gas becomes degenerate the collision term of the Boltzmann equation has 
to be treated in a different way to include degeneracy. The modification to Canuto's 
conductivities due to this phenomenon has been studied recently by Baym et al. 
(BPP69), for the nonrelativistic case and by Kelly (KeT0) and Gentile et al. (CG70) 
for the relativistic case. The general effect is an increase of an amount of the order 
of ~ 106 over the previous conductivities (~  1023 sec -1) for the interior of neutron 
stars. This increases the magnetic field decay time by the same amount and therefore 
the pulsar lifetime with respect to the one computed by Gunn and Ostriker (GO69). 
A different scattering mechanism, i.e., phonon scattering has been recently shown to 
give the same results as the impurity mechanism used by Canuto, at least for values of 
F ~< 75. A simple analytic expression for ao, Equation (10.2) which also reproduces the 
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phonon mechanism, is simply 

a o = 1.08 T610~/3 1022 (sec -1) 

T 6 ---- 10 . 6  T ,  06 = 1 0 - 6  0 / # "  

As discussed earlier, this formula is valid for the neutron star crust (CS70). 

(10.5) 

A. LONGITUDINAL CASE (ALONG THE MAGNETIC FIELD) (CC69) 

In this case the electric field is parallel to the magnetic field. The electric field induces 
a motion of the electron which will be in the direction of the field. Since the motion of 
the electron along the field is a free motion, this problem can be treated using the 
correct wave functions for the electron in a magnetic field. In other words, the Hamil- 
tonian of an electron in an electric field parallel to the magnetic is diagonal in the 
representation where only a pure magnetic field exists. 

The most important scattering process is the Coulomb scattering process 

e ~  + (Z, A) ~ e~,p, + (Z, A). (10.6) 

The nucleus can be assumed to be infinitely heavy. In this process n, Pz, and n', P'z are 
related by the energy conservation relation, 

2nH/Hq + (pz /mc)  a = 2n 'H/Hq + (p£/mc)  2 . (10.7) 

In the absence of an electric field the motion of the electron is linear in either direc- 
tion with a zero average motion. When an electric field is applied in the z-axis, the 
z-motion of the electron will become accelerated in the direction of the field, but this 
acceleration is dissipated by scattering processes into a constant macroscopic drift 
velocity yd. We are therefore interested in the rate that z-momentum of the electron 
is lost by collision. 

For  a given set o fn  and n' (10.7) gives two solutions forpz:  

p z > 0  p ' > 0  
p ~ > 0  p ' < 0 .  

There are two additional sets of solutions with the reverse sign for p~. These 2 solu- 
tions will be included in (10.6) when p~ is integrated from 0 to c~. The time scale 
over which the z-momentum is lost is (AA56, AH59, A58): 

zn -1 = Z (1 - P'dG)  w ( i - - * f )  (10.8) 
f 

where i is the initial state andf i s  the final state. This gives: 

"Co~Z,, = E [ E  2 - a2,] -~/2 1 + R+ 
n'=0 E 2 a 2 

+ _ E E e  2 - a .,l - l j 2  1 - R _  
n r = O  

2 R+_ ==-R(u,-Y-u') u ' = ( 2 0 ) - l / 2 ( U - a ~ . ) ~ / ~  a. = 1 + 2 n 0  
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O9 

f ,A....(,, 2 R(u ,u ' )=  dt [ ~  (u _u7~]2  # (4) 

0 

IA,,, ,,,I 2 = [ ~ t / ,  (n In') - ~2~  (n - 11 ,,' - 1 )y  

~(nln ' )=(n!n ' , ) -2 /2  e-t/2t("+"')/22Fo(- n ' , - n ; - ~ )  
o~ (10.9) 

(4) = 1 + 3 t" (x4)-2 sin(x4) dx 

0 

4+ = 2 . 6 9  0-2/3z1/301/2  It  q'- {IX -~- Ut}2~ 1/2 

2r 2 = 20~ 2 = 1 + E -2 + E -2 (E 2 - a2) 2/2 (E 2 - aZ.,) 2/2 ; 
092092 = OE -2 (nn')l/2" 

As explained in a review article by Kahn and Frederiske (KF59), the Boltzmann 
equation (which is the master equation for the computation of conductivity in the 
field free case) for the longitudinal case is the same as that in the classical ease because 
the electron motion in the z-direction is still free (see, however, KMH65). I f f ,  is the 
occupational number for the state n, then the first order solution for the Boltzmann 
equation is: 

fn = f(o) + eE%af~o)/ap= 

wheref. (~ is the equilibrium occupational number for the nth state: 

f(~ = {1 + exp [ g k ~ ] m c ? l }  -2 . (10.10) 

By definition the current J is in the z direction. Since the current associated with a 
single electron is: 

wefind 

jz = eV~ = ecE-l (E 2 - a~) 2/2 (10.11) 

J =- Jz = - ~ j~f~N (p=) dp~ (10.12) 

n 

where N(p~) dp~ is the density of states between p~ + dp~ and is given by: 

N (p~) dp= = g (2re) -2 ~-2 (U/Hq) dp~. (10.13) 

The electrical conductivity all is obtained from Equations (10.9) and (10.12) and the 
Ohm's law J =  a II E; we obtain 

+ c o  

= - h - * e g  ~ ~ j~z,,(Of}~ (10.14) G[[ 
-oo 
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Substituting into (10.14) the expression of % (10.8), we find that 

al[ = cY[I (H/Hq) 2 f (~a, I~, O) 
where 

CYll = 4 [(27c) 3 ~3cZ~/'i] -1  (o:Zh/mca)-2[ 

~7 = 380, (Equation 10.2) 

dp - kT/mc 2 , 0 -- i-I/Hq 
and 

(10.15) 

(lO.16) 

oo 

f (qS,/~, 0) = f dEE ~ 

1 
Go 

x ~ o  ( E Z z  a2)2[/2 (~fgl/(?E) 

= ~ (E 2 -  a2,)1/2[1 + g ( E ) ] R _  -Jr- E ( E 2 -  a2')2[/2El + g ( E ) ] R +  
n ' : 0  n ' : n  

if2 (E) = (E 2 _ a2,)/(E2 _ an),2 an2 = 1 + 2nO 
(10.17) 

where R+ and R_ have been defined earlier, Equation (10.9). 
The thermal conductivity coefficient 2u is defined through the relation (M41, M50) 

dT 
Q = - 2u dx (10.18) 

where Q has the dimensions of erg cm- 2 sec- 2[ and 2 n of erg cm - 1 deg- 1. The Wiede- 
mann Franz law relates the parameter 2n with the electrical conductivity cr via the 
relations 

7-/7 2 k 2 

2~ = 3 e 2 crT. (10.19) 

As mentioned earlier, Equation (10.19) has been shown to be valid in a strong magnetic 
field by Zyrianov (Z64). The conductivity opacity n coefficient K~ defined as (Ch68): 

becomes: 

=(% Kff \ 3o~ ,] 2~1T3 

K2 = ~ (H/G) 2 f (4, , ,  o) 
/~y = } (27C)3 /TZ~/1.2.2q)/~c/~-2~2#i-2[ 

= 20.26 x 10 .8 T~Z2/A (cm 2 g-2[). 

(10.20) 

(10.21) 

Equation (10.17) contains a summation in the denominator and even if an approxi- 
mate expression exists, this approximate expression will be very hard to use. Equation 
(10.17) has been solved numerically for degenerate and non-degenerate case for 
H/H~O=l,O.l- l .2~<logqS~<0.2,  where ~=kT/mc 2 and 1~<#~<15. Extensive 
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n u m e r i c a l  tables  are g iven in  (CC69).  i n  Figs.  14, 15, 16 we repor t  the b e h a v i o r  of  

f (qS, /% 0) for  q~=0 a n d  0=1, 0.1 a n d  for  q S= l ,  0 = 1 .  The  d i scon t inu i t i e s  are due  to 

the dens i ty  of  f inal  states. T h e y  a lmos t  d i sappea r  at  h igh  t empera tu re .  In  Tab l e  IV we 

c o m p a r e  o'11 wi th  o'0, E q u a t i o n s  (10.2) a n d  (10.15) a t  0 =  1 for  densi t ies  r a n g i n g  
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LOGI~ P6 

I I 

0.55 0.65 

Fig. 14. The function f(#,  0), see Equation (10.15), for a degenerate electron gas as a function of the 
density 06 for 0 =H/Hq = 1. The relation between .06 and # is taken to be .06 z/a = n 2 _  1. 

The undulating behavior is related to the density of final states (Figure 3). 

TABLE IV 

06 trll • 10 -21 (sec -1) ~r6 • 10 -zl (sec -1) tr• • 10 -2t (sec -1) 

8.0 69.37 3.14 1.68 
14.7 74.08 3.12 1.13 
22.6 71.93 3.32 1.00 
31.6 72.61 3.49 0.97 
41.6 76.48 3.59 0.98 
52.4 81.56 3.45 1.01 
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Fig. 15. The  same  as in Figure  14 for 0 = 0.1. I n  this case the  relat ion between Q and/~ is more  com-  
plicated t han  in the  case o f  Figure  14. The  n u m b e r  of  discontinuit ies is noticeable increased wi th  

respect  to the  case H = Hq. 

between 0.4 ~ l o g p 6  ~< 1.6. In general it is seen that all >> a o. This phenomenon is known 
as negative magnetoresistence. At higher densities O'll/a o tend to decrease and eventu- 
ally the density effect will dominate even at H~-Hq. We therefore expect all/o'0--~ 1 at 
~6 >~ 106 g/CC. 

It is seen that the conductivity is increased by the presence of the magnetic field by 
a factor of 70 at 0 = 1. As the density is increased, this difference gradually diminishes 
and at very high density the effect of the field becomes small and the theory with no 
magnetic field can be applied. 

B. TRANSVERSE CASE ( E  I TO THE MAGNETIC FIELD) 

in this direction the motion of the electron is quantized and the ordinary Boltzmann 
formulation fails. Instead, the Wiedemann-Franz law may be applied to obtain the 
thermal conductivity from the electrical conductivity. The method of computing 
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Fig. 16. 

4.2 

52  

2.2. 

I 

f ( i b , f f , O )  

0=lqS=l 

1.2 " 

0.05 0.75 1.47 2.19 

The funltion f(~b,/~, 0) for ~b = 1, 0 = 1 as a function of/l. At high temperature the final 
state discontinuities level off in a very conspicuous manner. 

electrical conductivity appropriate  to this problem is the density matrix or  the ' K u b o  

formalism'.  The general theory has been developed for use in solid state physics for 

a long time [see KF59] .  

The average velocities of  vx and vy are zero for an electron in a magnetic field. A n  

impressed electric field .1_ to H will cause particles to move. The non-relativistic 
solution for an electron in a crossed electric field and magnetic field has been known 

for some time. The energy eigenvalues and the wave function are given by (ho~o = 
= mcZH/Hq) (CCH69, KF59)  

H 1 2 eEp,  1 eZE 2 
E,pzp" = mc 2 (n + �89 ~ + 2m p~ mo~ o 2 mcog (10.23) 

1 ( p, 
~,,=v, = s 4 ,  x + - -  + (10.24) 

m ( D  o 
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The wave function q$ differs from those in the absence of a magnetic field by a dis- 
placement from the center by the following given amount: 

N ( D  2 /Y/C 

but otherwise have the same analytic form, i.e., 

~, (x) = e-X2 H, (x). 

The effect of an impressed electric field in the x-direction is therefore to remove the 
degeneracy with respect to motion in the y-direction, and to shift the center of the 
orbit. 

The conductivity in the .1_ direction is no longer a scalar as in the [I case. We can 
define the conductivity tensor as (Z65) 

( H -  2 Ax x - H-1 Ay~ - H-  j A~x~l 
a~ = ! H-_ 11 Ay~ H-_ 21 Ayy H -  1 Azr 1[. (10.26) 

H A~  H Azy Azz j 

where the coefficient A is independent on the magnetic field. The transverse resistance 
is defined as 

1 1 
Ot - - (A,yA= + A2,) 

axx AH 2 

where A is the determinant of the matrix o-~a. At the lowest power in 1/H 

1 AyyA2z + Az~ 
axx AzzAy2~ 

i.e., the transverse magnetoresistance tends to a constant at high field. 
In Figure 17 we show the experimental behavior of (A0/0o)ll,• in the case of 

mercury telluride at 4.2K as a function of H(G67). 
A complete quantum-mechanical computation of the transverse conductivity was 

performed by using the density matrix approach (CC70). The expression for crry and 
O-xr are given by 

4Z2o~z rrlc2 3 ( H ~  -1/2 
crYr = ~ 2 ~  h z~Jg'i \ / ~ J  f (p' 0) (10.27) 

mc2 2~3 Jg'~ (H~']-a (10.28) 

with 

fO,,o)= 2 
n = 0  n ' = 0  

oo oo 

0 0 

(10.29) 
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Fig. 17. SdH oscillations in mercury telluride in [] and • magnetic field, at 4.2 K; the electron density 
is 1.18 • 10tS/cm 8. The oscillations are in phase. 

F(~,  n') = 
2 

2 a. = l + 2 n H / H q -  l + 2nO (#2 _ a2)1/2 (~2 _ a2)1/2 

(lO.3O) 
S1/2 o+={, 

s + 5 E, / ;~  - a. __ , / ~ 2 - ~ , 7  

The function A_+ depends on a certain combination of spinor coefficients as reported 
in the appendix of the original paper (CC70). In Figure 18 the function f( /x,  0) is 
given vs. # = (1 + Q~/3)1/2 for H =  10-1 H~. Compared with the equivalent function for 

the longitudinal case (Figure 14), we see that in each jump the behaviour is just the 
opposite. The 0 = 1 case is perfectly analogous although the number of jumps per 
density interval is reduced. Once we know the function f (#, 0) the transverse con- 

ductivity can be easily computed from 

2 2 

o'• = axr + ayy (10.32) 
•yy 
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The function f(/z, 0) vs ,u (in units of me 2) for 0 = H/Hq = 10 -1. 

A comparison of the transverse, zero-field and longitudinal conductivities, Equations 
(10.32), (10.2) and (10.15) is given in Table IV, vs. density at H=Hq. A sizable effect 

can be found only if the density is low enough. At higher density the three conductivi- 
ties will coincide and no magnetic effect would be left whatsoever. This situation is 
analogous to the one encountered in the neutron beta decay (see Figure 13). 

11. Magnet i za t ion  of  an Electron Gas.  Semi -Permanent  M a g n e t i s m  ( L O F E R )  

An electron possesses a magnetic moment  #~ = eh/2mc (Bohr magneton) and macro- 
scopic magnetization can result f rom this magnetic moment  and from the orbital 
motion of the electrons. As is well known in plasma physics, the magnetic moment  
associated with a classical electron is diamagnetic. However, under certain circum- 
stances an electron gas can possess a net magnetic moment.  

In previous sections we have made no distinctions between B, the magnetic induc- 
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tion, and the external field H. The properties of an electron depend only on the strength 
of field near the electron and this is the field we talk about. However, as has been 
shown previously, (Ra44, Wa47), an orbiting electron in a magnetic field senses not 
the external field H but the magnetic induction B such that 

B = H + 4riM (11.1) 

where M is the magnetic moment of the gas. As a result the Larmor frequency of the 
electron co L is given by: 

eB eH 
c o L = - -  and not - -  (11.2) 

m r  m c  

If  there is a net magnetic moment of an electron gas, M, then B r  However, as 
M depends on coL which in turn depends on B, M must be a function of B. Hence the 
magnetic moment of an electron gas must be given by the following non-linear equa- 
tion: 

B = H + 4riM(B).  (11.3) 

Under ordinary conditions (i.e., high temperature and low density) 4 n M ~ H ,  i.e., 

B M 
= # = 1 + 4 n - -  -~ 1 (11.4) 

H H 

and no distinction need be made between B and H. 
At high density and low temperature, however, as we will show below, the value 

of M increases and eventually 4riM(B) becomes greater than B and solutions can 
exist such that 

B = 4nM (B), H = 0. (11.5) 

This means that an electron gas can become self-magnetized. Such a state of permanent 
magnetization is distinctively different from the ordinary ferromagnetism. The 
magnetization associated with Equation (11.5) will be referred to as 'Landau Orbital 
Ferromagnetism' or LOFER (LCCC69, CCCL69). 

The magnetic moment M of an electron gas has been shown to be (CC68c): 

1 1 0 
M - lnZ (T, H) (11.6) 

f2 k T  OH 

where ~2 is the volume of the system and Z is the grand partition function, which is 
given by 

-l-oo 

1 eB{  I - l n Z  = - -  
nh 

- o o  

d x l n [ l + e x p {  e(X,T_~o0)-#} 

o0 +o0  

+ ~ f d x l n I l + e x p {  e ( x l n ) -  

~ = 1  --o0 

(11.7) 
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where 
eZ (x, n) = l + x 2 + 2nB/Bq x - p2/mc, Bq - Hq. (11.8) 

After substituting (11.7) into (11.6) and carrying out some reductions as in reference 
(CC68c) we find: 

co 

M - 7.c2 . 3  an C2 (T/a,, #/a,) 
A e 

n = l  

B ~a nCl(T /a , , l l /a , )  } (11.9) 
B e 

n = l  
o r  

M-Bq #B (PII-P• 
B mc 2 

where PII is the parallel stress and P• is the normal stress. C, are the functions defined 
earlier (see Equations 5.27-5.30). 

A .  C L A S S I C A L  L I M I T  

We will show that at high temperature and low density M does reduce to the Curie- 
Langevin law for the magnetic susceptibility. In the non-degenerate and non-relativistic 
case: 

exp (e -~5~ >>1. (11.10) e (x, n) ~ 1 + IX2 + nB/B e '1'/'1o,] 

In the definition of the C~ function when 1 is neglected against exp [(e-#)/(T/To)],  
Equation (11.9) becomes: 

oo 

[ 2 # B I ( T  ) # - - 1  T ~ ( T / T ]  nB/Bq~ 
M - n2 ~3 ~ Too exp T~o- + To exp T/To ,] 

. = 1  
o0 oo 

n exp exp - dx. 
B e T /T  o ]]  (11.11) 

n = l  0 

Equation (11.11) can be rearranged into a geometrical series and its derivatives. After 
carrying out the sum we find: 

M = (2rcT/T~ l~ 
2 3 

Blab 
r I -- 

kT  

In the case t/< 1 we then find: 

~3~ (t/coth t/) ~ 2q. 

# - l a  
exp T/To 0~ (rl cotht/) (11.12) 

(11.13) 

(11.14) 
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As we will show later B ~ H  and M ~ B  so that in (11.12) B may be replaced by H. We 
therefore find for the magnetic susceptibility 

(m) 21~ . -  l V a (2~kT)3:21J 
Z -  ~ ,=o-3kTexPT/T~o  L ~ \ ~ c 2  j ~ �9 

(11.15) 

From the definition of Z we find that in the limit (11.10) 

f2 1 (2nkT'~ 3/2 
l n Z - 4 n 3  X3 \~-c2- /  �9 (11.16) 

The particle density N is given by 

1 3 # - 1  
N = -  2 - -  lnZ,  2 =- e x p - -  

0 02 T/To 

and therefore 

(11.17) 

( / ~ ' ]  1 
Z = 2 \ k T ]  N oc ~ (11.18) 

which is the Curie-Langevin law. 
This classical result includes both the diamagnetic part (due to particle orbital 

motions) and the paramagnetic part (due to spin magnetic moment). The para- 
magnetic part is N #B/kT and the diamagnetic part is minus �89 that of the paramagnetic 
part, and the sum of the two yields a factor of 2 in (11.18). 

It is difficult to separate the general expression (11.9) into the corresponding dia- 
magnetic and paramagnetic parts. Nevertheless we can still decompose (Gordon 
decomposition) the 4 currentj, (Sa67) 

such that 

ju = ie~y.~/ = j(1) + j(2) 

ieh e 2 

(11.19) 

(11.2o) 

becomes the Landau Hamiltonian giving rise to diamagnetism in the non-relativistic 
limit and the other part 

j ( f ) A , -  eh [12~A" 10Av 1 
2me ~x~ (~,vO) + 5 ~ (~o,~O) (11.21) 

becomes the Pauli Hamiltonian giving rise to spin paramagnetism in the non-relativistic 
limit. 
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Fig. 19. As explained in the text at a fixed density (or p) Equation (11.22) admits many solutions 
because of the osci]]atory character of M(B). ]n this figure only the maximum values of B are plotted 
vs the corresponding densities. I t  can be checked that Bm~x ~ 062/~ which is what the flux conservation 

law would predict. 

4"n-M 4 7r M - ~  

, ~ ~  "4"TrM (a) 

=B 
Fig. 20. Behaviour of the two functions 4~zM and 4~rM(B) as given by Equation (l 1.22). The last 

point of intersection corresponding to Bax is plotted in Figure 19. 
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B. DEGENERATIVE EXPRESSIONS FOR M 

This limit is analogous to that in the equation of state. We find 
s s 

M = -2~z z c~'a C2 (l.Z) + a nC2 (#~an) - ~ nC1 (l~/an 
,= ,  n=l (11.22) 

_ B [PL  (B)  - F .  ( B ) ] .  

Bq me 2 

Pll and P.  show oscillatory behavior as a function of the density N, and so will M. 
This oscillatory behavior is entirely due to orbital quantization and is responsible for 

the existence of a state of  permanent magnetism, as we shall now show. 

C. LOFER (LANDAU ORBITAL FERROMAGNETISM) 

This is a quasi-stable self-consistent macroscopic magnetism associated with a non- 
interacting degenerate electron gas. (This state is characterized by an energy higher 

than the ground state.) This macroscopic magnetization is the sum of all microscopic 
magnetizations associated with electrons in their respective Landau levels while the 
Landau levels of  the system are in turn maintained by the macroscopic magnetization 
of the system. The magnitude of the field is given by the solution of Equation (11.3) 

with H =  0, i.e., 

B = 4toM(B) or M = M(4= M) .  (11.23) 

M(B)  or M ( 4 ~ M )  is derived by using in the interaction terms of the Hamiltonian-a.A, 
the induced current a and the vector potential A due to the orbital motions of all 
electrons. There are a number of  solutions of  the LOFER state for a given density of 

electrons and the maximum value of LOFER magnetism is shown in Figure 14 for 
densities ranging from 10 6 g/cm 3 to 10 *s g/cm 3. 

Thermodynamically the LOFER state is not the minimum energy state and hence 
not the most stable state in the thermodynamical sense. But a system that is not 
thermodynamically stable may still require a very long time to reach the most stable 
state. (An example is a bottle of hydrogen gas at room temperature; the thermodyna- 

mically most stable state is when all hydrogen nuclei are catalyzed into a piece of iron, 
but the lifetime against such a transition is over 10 *~176 years, and one can regard a 
bottle of hydrogen at room temperature as a truly stab!e state for practically all 

purposes.) 
The L O F E R  state is the solution of the equation B=4zcM(B) and in the 4~M vs B 

plot, the LOFER states are the intersections of the curves B = 4rtM and B = 4zM(B).  
Since 47rM(B) is a spiked function, there are two solutions St and $2 associated 
with each spike as shown in Figure 15. As will be discussed later, a state with a higher 
magnetization is the more stable one. I f  the systems attains the solution $2 then it is 
certainly unstable against a transition into the next lower level $3. The stability of 
this system is therefore the same as the stability against a transition from the $1 state 

into the S 2 state (or S 3 into S 4, and so on). 



INTENSE MAGNETIC FIELDS IN ASTROPHYSICS 57 

In general M(B) is also a function of the temperature and at high temperature 
M(B) reduces to the classical expression, for which no intersection exists between the 
curve 4~M(B) and 4~zM, therefore there must exist a critical temperature Tc above 
which no LOF ER state exists. This is analogous to the classical case of Ferromagnetism 
in which above the Curie temperature only paramagnetism exists. The value of the 
critical temperature has not been ascertained for the non-relativistic case. It is found 

that the condition for LOFER to exist is: 

#/~T > 10 v (c/vp) 2 (11.24) 

where # is the Fermi energy and v F the Fermi velocity. For  white dwarfs (for which 
(11.24) is barely applicable) vp-~c. The condition for LOFER magnetism to exist is 
therefore T < 1 0 3 K  (tl~"mc 2 in the center of most white dwarfs). However, (11.24) 
expresses a much more stringent conditions for the existence of LOFER state. The 
actual transition temperature is probably ~ 104K. This temperature is achievable in 
white dwarfs after a few times 10 9 years if crystallization does take place (AM59, 

$61, MR67). 
Below this temperature the LOFER state is stable. In order for the gas to make a 

transition form St to $2 it is necessary to cross an energy barrier of the amount 
fiAf2~. V where V is the characteristic volume of the system, and AO B is the free 
energy difference at the peak of the M(B) curve and at S t. If  we choose V=4r~R~/3 
then it is shown that below T c 

VAf2~ >> ~cT 

so that the probability for the system to make a transition from S t to $2 which is 
proportional to exp ( -  VA ~?B/tcT), is negligibly small. 

12. Coulomb Bremsstrahlung in a Magnetized Plasma 

In addition to the synchrotron radiation process (Section 6) the bremsstrahlung pro- 
cess is an important radiation process. Further, it is the most important continuum 
emission process. 

Unlike the synchrotron radiation the bremsstrahlung process must take place in the 
presence of a plasma. The presence of a plasma strongly affects the propagation of 
electromagnetic radiation. In this section the bremsstrahlung process in the presence 
of a plasma and a magnetic field will be discussed in detail. 

Consider a test particle moving in a magnetized plasma. All possible effects can be 
understood in terms of the equation of motion whose solution gives us the current 
j~ (r, t ) (~ = 1, 2, 3). Quantum mechanically this current is given by 

ie 
L (r, t) = ~ieh [~e*V~' - ~ 'V~'*] V --- V - hc A~ (12.1) 

where ~ describes the state of the particle. If the particle is thought to be acted upon 
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only by an external magnetic field the ~g to be used is the solution of Schrodinger or 
Dirac equation with a magnetic field [see Appendix I]. This particle, moving in a 
medium produces an electromagnetic field, which in turn can be determined, using the 
Maxwell equation, as a function ofj~(r, t) itself. In a magnetic medium the electric 
field produced by such a current is given by [Sh66] 

E(r,  t) = r E @ ,  co) e i k ' r - i m t  d3~c de) 

2 (12.2) V"3 
4=i a(l)  j .a* (I) 

E(~c, co) - ) ,  
- 

/ . . . . . . ,d  

t = l  

The quantity n~, the refractive index for the ordinary (/= 1) and extraordinary wave 
(l= 2) respectively, is given by 

B 1 
n2 - 2 A  +- 2 A  (B2 - 4AC)~/2 

A = eft sin 20 + 533 COS20 q- 513 sin 20 

B = (e12 sin 0 - 533 COS 0) 2 -1- 523 (COS 2 20 + sin* 0) 

- 511533 - e22 let1 sin20 + e33 cos 20 + e13 sin20] 

c = - - - - 25125  5, . 

(12.3) 

Here 0 is the angle between tc and H. The dielectric tensor of the medium, e~a, is 
usually given in a system (Xo, Yo, zo) in which H is along the zo-axis and ~c lies in the 
plane (x o, Zo). 
The vector a has been shown by Shafranov to be 

�9 o 

0 and 0 given by where [a 2 = (1 + e2)-1] the quantities e~ c~ 

512533 -t- /323513 - -  112 [512 sin 0 - 523 c o s  O] s i n  0 0 

512ela + elle23 + n 2 [512 sin0 - 523 c o s 0 3  COS0 o 

C~z n 2 ( s i t  s i n  2 0 -k 533 c o s  2 0 -t- 513 sin20) - 511533 -I- 513 

(12.6) 

(12.7) 

are the ratio of the component of the electric field and therefore determine the polari- 
zation of the wave. In fact e ~  cos0+% sin0, e~ cos0-c~x sin0 satisfy the 
following equation 

2 ~ x x  - -  t l yy  r ~, + i - 1 = 0 (12.8) 
t/yx 
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with 
~xx = u [~1~33 - ~ d  

tlyy = N {g22 [~ll sinZ O + ~33 c~ 0] - g122 sin20 

+ [e22e~3 + e23e12 ] sin20 - ~23 cos20} (12.9) 

.,x = - i u { [ < 2 ~ , ~  + ~ 2 ~ 1 d  cos0  + [~12<~ + ~23~113 s in0)  

N -~ = e~ sin20 + e33 cos20 + e,3 sin20. 

Depending on the angle 0, Equation (12.8) gives the various types of polarizations. 
Once the electric field is known as a function ofj~, the Maxwell equation gives the 
definition of the intensity per second or power emitted by the particle, as 

1 I" d3tr do) 
I = ~ J ~ - r c ~ - [ j a ( k ,  co) E*(k,  co)+ E~(k, co)j*(k, co)] (12.10) 

Substituting Equation (12.2) into Equation (12.10) we obtain 

O9 

I = f d c o f  dQ I(co, f2) (12.11) 
0 41. 

where the emissivity I(co, ~2) is defined as 

I (co, O) = 2 Re _f d3~: Gap (k, co) Lap (k, co) (12.12) 

with 
Ga~ = j~ (k, co) ~ (k, co) 

2 

4Tci V a,(Z) @'(1) (12.13) 
L~fl . . . . . .  L oo k%~/co  ~ - n~" 

l = l  

In Shafranov's paper many examples with different Ja (k, co) are discussed in detail. 
To compute Equation (12.11) in the case of Coulomb bremsstrahlung in a magnetic 
field, i.e., 

e - + ( Z , A ) ~ e - + ( Z , A ) +  

we must compute the current given in Equation (12.1). From perturbation theory we 
know that 

T a (r) = ~9~ (r) - ~ tiff] Ao [@ ~a (r) (12.14) 
E~ -- E a 

where 
A o = Ze/r. 

The Fourier transform of the electric current,j(k, co), is simply given by 

j (k, co) = 2~zhj (k) 6 (E i - E I - hco) (12.15) 
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with (~ = x, y, z) 

e ~ { ( f l e - i g ' r I I ~ [ l ) ( l ] A o [ i )  

 --ET--Yr 
I 

( f ]  Ao lI) (I[ e-'k'rH~, 1i)] 
+ 

Ei  ~ E i  ~ ]lco 

(12.16) 
where i, f a n d  I stand for initial, final and intermediate state. 

A. DIELECTRIC TENSOR FOR A COLD PLASMA 

With Equation (12.16) substituted in Equation (12.2) and then in Equation (12.10) 
one obtains in principle the energy loss at any angle and for any form of dielectric 
tensor. The problem is quite involved and the final form too complicated to analyze. 
We will therefore study separately the propagation ][ and I to H as usually done in 
magnetized plasma, and will specify the type of plasma to be worked with. We will 
use the tensor Gp as given in the magneto-ionic theory, i.e., ($62) 

where 

e~.a = S 
0 

R = I  

(12.17) 

2 2 
cop co O p  co 

(0 2 CO - -  (.0 H (.0 2 co @ O H 

2 2 
L = 1 coP co ~r~p co 

co2 co .q_ (.OH (DE co - On (12.18) 

2 2 

P = I  COP Op 2 S = R + L  2 D = R - L .  
0)2 (/)2 

The various symbols are defined in the following way 

2 4toNe ez eH 
cop --  coIl = - -  

tt't m c  

m 
02 2 __m Z On = con Zi 

= coP M i  M i  

(12.19) 

where M i is the mass of the ion, and Z~ its charge, n~Z~=nr With this notation, 
Equation (12.3) for H ff reduces to 

with 

1 (B+F) N ?  = _ 

A -- S sin 20 + P cos 20 

C = P R L  

(12.20) 

B = R L  s in  2 0 + S (1 + COS 2 0 )  

F 2 = (RL  - -  P S )  2 sin* 0 + 4 p 2 D  2 COS 20 

(12.21) 
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Equation (12.20) can also be written in a more transparent form ($62) 

tg20 = _ P ( N  2 - R )  ( N  g - L )  (12.22) 
(SNZ~ - R L )  ( N  g - P )  

from which the dispersion relation at 0 = 0 and 0 = re/2 are easily obtained as 

0 = g/2 N z = P (ordinary) N z = R L / S  (extraordinary) 
(12.23) 

0 = 0  N 2 = L  N2~ = R .  

The terminology, ordinary and extraordinary, is well established at 0 = g/2 where it 
is seen that the minus sign in Equation (12.20) gives rise to N_ 2 =P,  independent of the 
magnetic field: i.e., this mode propagates as it would in the absence of H (ordinary). 
The plus sign gives rise to N2+ = R L / S ,  i.e., it does depend on H (extraordinary). The 
same terminology is retained for 0 = 0. The parameters c~, ex and ez are easily trans- 
formed to ( l= __) 

(1) = - P D  cos 0 [ A N  2 - P S ] - I  

ax (1) = D (N~ sin 20 - P )  ( A N  2 - P S ) - I  

% (1) = N ? D  sin 0 cos 0 (ANz 2 - P S ) -  1. 

(12.24) 

B. PROPAGATION AT 0 = 0. 

From the previous equations one can easily see that at 0 = 0, one obtains 

i.e., 

A = P B = 2 P S  C = P R L  

N ~ = L  N ~ =  n ~ ( 0 ) = - ~ ( X ) =  1 

~z (o) = ~z ( x )  = o ~ (o) = - ~ ( x )  = 1 

1 [i, 1, 0] a ( o )  = 

1 
a ( x )  = 4 ~  [ -  i, 1, 0] 

(12.25) 

(12.26) 

From here it follows that since iEx/Ey = - ax, the ordinary wave is left-hand circularly 
polarized. This means that at 0 = 0, only circularly polarized waves can propagate in 
a plasma. However, the emerged radiation may still be unpolarized or linearly po- 
larized as a result of a combination of both R- and L-polarization states. 

Substituting the polarization vector a into the expression for the electric field a 
little algebra gives (e = 1, 2, 3) 

4~c 2 

E j *  + E,*j, = - -  6 ( A )  [Jx - i j ,  I 2 (12.27) 
03 
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for the extraordinary wave and 

47T 2 
E=j* + E~*j~ = - -  c3 (A)  [j. + ijyl 2 

CO 
(12.28) 

for the ordinary wave. The delta function comes from the fact that  

1 
-- = P (A) - in6 (A) 
A 

A = ~c2c~/co z - N ~  

(12.29) 

where P stands for the principal value. 
Remembering that  (ST68, AR69) 

(II~ - iHr) In) = m c ( 2 n H I H q )  1/2 In - 1) 

(II~ + i17[,)In> = m c [ 2 ( n  + 1) Hlttq] 'lz In + 1> 
(12.30) 

we obtain for the extraordinary wave 

dI  (co, g2) _ Io ~ 2 N  "i a t  

dco dO ~ / ~ -  co - n'co n J (t + 2)2 
0 

x 1 + n ' J ( n ,  n' + 1, t) + n J ( n  - 1, n') 

Z20~ 3 m e  2 

- ~/2 8~ h/me 2 n,2~ 

= R ,  ~ = e , / m d ,  co = c o / ( m c 2 / h ) ,  co,, = H / H q  

/o 

N 2 

2 

? 

(12.31) 

= (2con) -1 {~/2 (e - ncon) - coN - 7 ~/2(e  - co - n'(on)} 2 

= + 1  

J ( n , n ' , t ) = ( n , n ' I ) - t / 2  e - t / 2 t ( n + n ' ) / 2 2 F o ( - n , - n ' ; - ~ )  (12.32) 

E,  = co - con - �89 cO2N2 - ?coN ~/2(e  - co - n'con) 

E z = co - co, + �89 - ?coN x / 2 ~ - -  ncon}. 

A perfectly analogous computat ion gives the following result for the ordinary wave 

co 

dI (co, f2) _ Io c~ f dt 

d o  dO ~ - - c o - - n ' c o H  ( t + f l )  2 
0 

1 ~ / n ' J ( n '  1, n, t) + n + l J ( n + l , n , t )  X - -  r (12.33) 
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E 3  = co q-  COn - -  l c o 2 N 2  - -  7 coN, /2 (e  - co - n ' c o n )  

E4=CO + con + �89 co2N2 - 7CON,/2 (~ - ncon) 

N 2 = L.  

(12.34) 

Simple cases of n, and n' will be discussed later. 

C. P R O P A G A T I O N  A T  0 = n/2. 

In this case the only wave we consider is the extraordinary one since the ordinary will 
not propagate if 

2 2 
N 2 = P = 1 cop f2p 

cog co2 < 0. (12.35) 

Equation (12.44) is satisfied in the radio wave region and at the surface of a neutron 
star where the density is of the order of N e~- 102~ ~- 10 .4  g/cc The extraordinary 
mode has the following polarization vector 

a (x) = (0, 1, 0). (12.36) 

This form has been deduced from Equations (12.6) and (12.7), omitring the longitudinal 
component since our unit module's normalization is valid for pure transverse waves. In 
this case the quantity of interest is simply given by 

87c 2 

E~,j* + j~E~ = IJy (k, co)l 2 ,5 (A).  
CO 

Using Equation (12.39) we obtain 

dI (co, f2) _ 1 co2N ? dt 
I0 

dco dQ 2 `/e - -  09 - -  n ' c o  H ( t  + ~,)2 J 
0 

1 (12.37) 
• (co _ con) 2 [ , / 1  + n ' J ( , , ,  n' + 1) + , / ~ ( , ~  - 1, ,,)3 2 

1 [J (n + 1, n') , / n  + 1 + , / 2  J (~' - 1, n)32} 
+ (co + con) 2 

f= i 
2co~ {,/2 (e - ncon) - 7 J2 (e - co - n'con)} z (12.38) 

N 2 = RL/S. 

D.  B R E M S S T R A H L U N G  E M I S S I O N  I N  T H E  L O W  Q U A N T U M  N U M B E R  R E G I O N  

In this section we will give the explicit form of the radiation intensity for a few quan- 
tum numbers, namely, n=0 ,  n '=0 ,  n '=  1, n=  1, n '=0 .  Using Equations (12.31) and 
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(12.38), the following notation 

1 dI(co, s 
[ (n, n'; O, X) = Io  dco dr2 

we obtain the emissivity along the direction of the field, 0 = O: 

(12.39) 

0) 2 1 

7 (o, o; o )  = 4 ~  X/~ _ co e l  c l  (~) 

(.o2 1 
I (0 ,  0; X)  = x/R x / ~ _  E co~ C1 (2) (12.40) 

2 = (2coH) -1 [ 4 ~  - cox/R, L - y x/2-(~ - co)]2 

< = co _ co. _ lco~R - ~co , /2R (~ - co) 

E4 = co + con + lco2L - Yco ~ / ~  

(.o2 1 
I (1, O; O) = ~/L ~/e - co E 2 C3 (2) 

e~  = co + ~,n + � 8 9  - ~ o , , / 2 L  (~ - con) 

2--- (2con) -1 { ~ 2 ( e  - con) - co~/T, -  Y X / 2 ( e -  co)} z 

0)2 {~[C2._[_ C3__2C1.1 
I (1 ,  0; X) = ,,/R V ~  (12.41) 

1 1 
[2Ct  - 2C2]} 

E 1  = co - COn - -  �89 co2R - -  ~ C O X / 2 R  (g - co) 

e ~  = co - con + � 8 9  - ~co X / 2 R  (~ - co.,) 

2 = (2con)- * Ix /2  (e - cot~) - cox/~ - ? x / 2 (  e - coil 2 

Analogously the emissivity perpendicular  to the magnetic  field, 0 = n/2 is given by: 

7 (0, o; x )  = ~ ~ s  , / ~  ico - con) 2 ~co + ~ . ) 2  c l  (2) 

2 = (2o~.) -1 [X/2V2~- ~ 4 2 ( ~  - co)?2 

1 RX/~ o)2 [(co 1 1 1 
i ( 1 , 0 ;  X) = 2 x / e _  ~ __ (Dn)2 + (0)  _}_ ~ n ) 2  C 3 ( 2 )  (12.42) 

2 = (2con) -1 rx /2  (e - con) - 7 x / 2 (  e - co)]z 

7(O, 1 ; X )  2 S X / e - C O - C O "  co -o~n )  z (co-t-c~ i C3(2) 

2 = (2con) -1 [ x / ~  - Y x/2((e - co - con)] 2 
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C1 (x) = e x(1 + x) E ( x ) -  1 C 2 ( x )  = - - 

C3 (x) = 1 + x - (2x + x 2) eXE(x) E(x) = 

1 
e e(x) 

X 

i e - s  

- -  a s .  
s 

x 

(12.43) 

The present calculation differs from the previous one (CCFC69) in several signi- 
ficant ways. First, the Green's function used here is an exact one, while in the previous 
case the free particle Green's function has been used. Second, the plasma effect has 
been incorporated into our calculation. The final result, for example, Equation 12.40, 
can be interpreted easily. The factor C1 (2) arises from the Coulomb field of the 
nucleus, the factor co z arises from the density of state of the photon, and finally, the 

factor E4 -2 comes from the Green's function and the factor 1 /x / (e -co  ) comes from 
the density of the final state of the electron. As discussed earlier in an intense magnetic 
field an electron exhibits one dimensional behavior; instead of the usual expression 
pZ @/dE, the density of the final state for a one dimensional particle is just dp/dE~- lip. 
The effect of the refractive medium on the photon is to alter the relation between co 
and k, and this is taken into account throughout the calculation. This process has 
recently been applied to pulsar emission radiation (CHC70). 

13. Astrophysical Applications 

In the laboratory the generation of a steady state magnetic field up to a strength of 
l05 G is relatively easy. By using a generator and a capacitor (Kapitza magnet) an 
oscillatory field of strength of 106 G can be achieved. By using shaped charge and 
proper configurations a field of 107 G can be achieved. At a field of 107 G the Landau 
level spacing is about 1 eV, matter will disintegrate because of the enormous Zeeman 
level splitting the outer shell electrons suffer. As Regge pointed out, the chemistry of 
matter under intense fields is quite different from those with normal fields. In fact, 
effects of strong magnetic fields on biological systems have been detected. 

Steady fields of the order of 107 G or greater can only be found in astrophysical 
bodies. According to the flux conservation law, the field of a current carrying plasma 
can increase as the square of the contraction ratio, C. In the case of white dwarfs, C is 
of the order of 100, and fields of the order of 107 can exist in white dwarfs. More 
drastically, in the case of neutron stars, C is of the order of 105 and fields up to 10 ~4 G 
can exist. Such fields have been speculated in the past and have been ridiculed for 
being unrealistic. However, the discovery of pulsars (pulsed radio sourches) left no 
doubt that, not only neutron stars exist, but fields of the order of 10 ~3 G or greater 
also exist. 

However, much of the treatment of strong fields in the literature still follows the 
pattern of classical electrodynamics which we, among others including groups work- 
ing actively in the Soviet Union, and Erber, have shown must fail under conditions 
currently associated with neutron stars. The most severe effect of strong magnetic 
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fields on a plasma is the synchrotron radiation rate loss, which in a field of 10 la G 
and an electron energy of 1 MeV, is already as short a s  10 -19 sec. As the application 
of the physics of strong fields to neutron stars is still in progress, we will not go on into 

details here. (Ch69) 

Appendix 1. Wave Function of an Electron in a Uniform, Constant Magnetic Field 

A detailed derivation of the wave function is given in (JL49). We will report here only 
the result. The general feature is that the wave function contains or depends on a param- 
eter which represents the degeneracy related with the location of the electron orbit 
in a magnetic field. The cylindrical coordinates (x=rcos~b, y = r s i n r  z = z )  the 

wave function ~ has the form [$60]. 

with 

02 
(A.1) 

e i k . . z  e i ( t  - 1) 4, 

O~,a = e-'Et/" j~ j~ fa,3 (~) (A.2) 

e lk~ ' z  e il4, 
~2, 4 = e-iE'l~ --j~ j~ f2,4 (~) 

ic~ I .  ~ ( ~ ) /  
s , , 2 , 3 , ,  = c3 J:_, 

,.iC4 I: (Q)• 

(A.3) 

(A.4) 

E = tlmc 2 [1 + x z + 2nH/H~] 1/2 q = _+ 1 (A.5) 

7 = �89 o~ = 7r z (A.6) 

I.~ (x) = (n! s!) - ' 2  e -x/2 x <"-'~/2 Q T s ( x )  

Q1 s ( x ) = ( - f  ~ ( - ) J  s ! n ! x  ~-J (a.7) 
2=o j ! ( s  - j ) !  (n - j ) ! "  

n=  1 + s = 0 ,  1, 2...  principal quantum number, s=0 ,  1, 2... the radial one and 1 =0,  
+1,  + _ 2 . . . ( - o e < / < o e )  the azimuthal ones. The 4 coefficients Ck in (A.4) at this 
stage are completely arbitrary except for the normalization condition 

4 

IGff  = 1. (a .8)  
i = l  

Their determination requires the introduction of a new operator 0 which commutes 
with the initial Hamiltonian. Two choices are usually made (TBZ66). 
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(1) 0=~.rc ,  rc=p-e/(c)A: this operator describes the projection of the spin on 
the direction of motion. The requirement that 

0~, = h/~(O (A.9) 

with (hcffc)2=E2-m2e 4 determine uniquely the four Ck. The eigenvalue ~ can take 
the value + 1. The C k comes out to be 

c1=~2 c2=~g c~=~2 c4=~fig 
2 2 2 =  1 + (ka/flc 2/~ 2 = 1 - (k3/k (A.10) 

2 ~  2 = 1 + mc2/E 2fl 2 = 1 -- mc2/E 

(2) 0 =/ /12 

II12 = me2 0"3 "q- C02 (0" • ~)3 (A.11) 

II124' = hck~4,. 

In this case ( =  + 1 characterizes the state of the spin polarization relative to the di- 
rection of the magnetic field" ( =  1 along the field and ( =  - 1 against the field. In 
this case we found 

C1 = aA C2 = - (bB C 3 = bA 
2A 2 = 1 q- (2~-1/k 2B 2 = 1 - (2 c l / k  

2a = (1 + p3c/E) 1/2 + ~ (1 - p : l E )  1/2 

2 b  = ( 1  + p~c / f , )  ~/2 - ( ( 1  - p 3 c / E )  ~/2 . 

C4 = (aB 

(A.12) 

The wave function used in References (K54) and (FC69) correspond to the first 
choice. In (K54) the wave function is given Cartesian coordinates and in this form 
it was taken in (CC68a). 

Appendix II. Green Function for an Electron in a Constant Magnetic Field 

We shall quote here 3 forms for the Green function. 

l. NONRELATIVlSTIC CASE (Zero temperature) (KMH65) 

G (r, r' l E ) =- lim 
e"+0 

2 
n = N  

E (np~) - (E --k ie) =- 2rh2h 2 
n~ Pz, 

N - 1  

~ J n ( x , y - y ' ,  x ')2, ,(E)exp[+ i l z -  z' I 2~-~ (E)] 

n = O  

J , (x ,y  - y ' ,  x') 2,(E)  e x p [ -  Iz - z'l 221 (E) ]}  

(A.13) 
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with 
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J. = exp [ \  2/~ J 

x [i (x + x') (y - y ' )  - �89 (x - x') 2 - �89 (y - y,)2] / (~) (A. 14) 

H/H~ 
~ 2 ~  [(x - x') 2 + (y - y,)2]. (A.lS) 

The quantity N is the smallest integer, not  smaller than El(me20) - 1. When [ r -  r '  < 
(H/Hq),/2 ,~ 2. Equat ion  (A. 13) can be simplified to (hc~ c = mcZH/Hq) 

m { h/l 2 
G(r - r' [E) = 2 ~  [r - r'1-1 + {2m [(n + �89 ho~ c - E l }  1/2 

N 

+ i {2m [e  - (n + �89 h~%]} ~" 
n=O 

2.  N O N R E L A T I V I S T I C  CASE (Finite temperature) (L68) 

The usual definition of  the finite temperature Green function is 

G(x, x') = f i- t  E exp [ _  io~,,(z - z')] G.(x, x') 
n 

co,, = ( 2 n  + 1)  ~ f l - 1 ,  f l - 1  = ~ r ,  n = 0 ,  _ 1, _ 2 , . . . .  

The function G, (x, x') can be shown to have the following general form 

[' ] G. (x, x') = exp - } mo)~ (y + y') (x - x') G. (x - x ')  

where the vector x -  x' has the following components  

x - x' = [(,, - x')~, z - z ' ] .  

The function G. ( x -  x ')  is now Fourier  t ransformed 

f d3p - x')]  G. (p) Cn(X- X')= (2~? exp lip (x 

and G,, (p) is finally computed to be 

~-~ (_ )N  LN (r/) 
Gn (p) 2e-n/2 

L 
N = 0  
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with 
2 

- - - _  (p~ + p,~) 
m(D c 

1 
E(N,  p~) = ~m p2 + (N + �89 hco c - # 

L N is the Laguerre polynomial of order N and # is the chemical potential. 

3. RELATIVISTIC CASE (Zero temperature) (KU64) 

The first computation of the Green function in a constant magnetic field was performed 
by Schwinger in 1949 (Sc49). We will report here a more recent computation by 
Kaitna and Urban (KU64). The relativistic Green function satisfies the following 
differenticl equation 

ion? ~ + ~ A,7 ~' - 2c 1 G (xy) = (x - y) .  

With the ansatz ( e ) 
G (xy) = i~3uy~' + h Auy" + 22 a C (xy) 

the Fourier transform of 6 (x, y) i.e., 

1 f exp (ipx) exp ( -  iqy) G (x, y) d 'x  d 'y  G(p, q) = ( ~  

is shown to be given by 

G (p, q) -- (32~02n 4) -1 c5 (Po - qo) exp (Plq2 - q lP2) Z -  1/2 -./;b 

• (I-F(1 +a/b)] -1/2 W_O/z)_(,/b),o(Z ) 0 ) 
0 F (a/b) w_ ~/b,O (Z) 

with 
Z - - c o ~ - l ] - ( p l - q ~ ) 2 + ( p 2 - q 2 ) 2 ] ,  a - p 2 - p 2 - 2 ; 2 ,  b - - - 4 c o  c. 

CZ 

~x~ ~y~ (Zz 
a 

A 

Ao 
A 
A1 (r, t)  

List of Symbols 

Sommerfeld's fine structure constant 
components of polarization vector 
polarization vector 
mass number of a nucleus 
vector potential operator 
scalar Coulomb's potential 
coefficient of plasma dispersion relation 
vector potential of the self consistent electromagnetic field in a plasma 
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A#  

B 
B~ 
C 
c 

cv 

D 

E - E ( p ~ ,  n) 

E 
e,,F~p 
8ctp 

four vector potential 
magnetic induction 
critical magnetic field strength 
coefficient of plasma dispersion relation 
speed of light 
specific heat at constant volume 
plasma parameter as defined by Stix 
Kronecker delta 
total electron energy 
electric field vector 
electric field components 
plasma dielectric tensor 

ell, g12, e23 etc. are components of the plasma dielectric tensor 
e- electron 
e charge of the electron 
es electron in the state n 
e total electron energy (in a strong magnetic field) in units of rest energy 

of the electron rnc 2 

= m f o ,  f~ fll - @II 

F 
f (r, p, t) 

f0(p) 
f l ( rP~)  
f ( x )  

9a 

gv 
Y 

a 
=__ c~ u 

Ox~, 
H 
H~ 
h 
h 
i 
J 
L 
K 
K~ 
k 

a 
; fo Op• 

plasma parameter as introduced by Stix 
Wigner distribution function 
equilibrium distribution 
perturbed first order Wigner function 
Fermi distribution, x -p / rnc  
axial vector coupling constant 
vector coupling constant 
electron total energy in units of mc 2 

Dirac matrix # =  1, 2, 3, 4 

covariant derivature 

magnetic field vector 
strength of the critical magnetic field 
Planck's Constant 
rationalized Planck's Constant 
radiation intensity 
electric current vector 
quantum mechanical current operator 
Boltzmann's constant 
conductive opacity coefficient 
propagation vector 
Lagrangian 
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L 
I 
2u 
M 

2 = gA/gV 
M 

m 

Mi 

#p 

# 

N 

H l 

1"1 

No 
H+~ n_  

N 

fie a 

t/xx ~/xy etc. 
fo 

(.O n 

foC 

foL 

fOp 

Qv 
f2~ 
f2 
w j  

W 

Pxx, Pyy= P• 

P==- PJL, 
P~z -- PII 
p~ 
P 
Px, Py, P~ 
fOl~ fO2~ fO3~ ('04 

Q 
q 
o(r, r') 
06 ~ 1 0 - 6 0  

Qt 

RL 
S 
S 

plasma Parameter introduced by Stix 
attenuation coefficient 
thermal conductivity coefficient in magnetic field H 
magnetization 
magnetic moment of electron gas 

rest mass of the electron 
rest mass of ion 
Bohr magnetron 
chemical potential 
particle density 
refractive index of magnetoactive plasma 
quantum number 
electron number density 
refractive index for circularly polarized waves 
index of refraction 
tensor related to the dielectric tensor e~ 
plasma parameters related to plasma dielectric tensor 
circular frequency 
level degeneracy factor in magnetic field 
cyclotron frequence for electron (foc- c%r) 
relativistic Larmor frequency 
plasma frequency for electron 
plasma frequency for ion 
cyclotron frequency for ion 
volume 
Fermi distribution function 
electron energy in units of mc 2 

Pressure along the magnetic field 
Pressure perpendicular to magnetic field 
momentum vector of electron 
components of electron momentum 
spin dependent functions 
Heat flow 
wave vector 
equilibrium density matrix 
density in g/cm a 
transverse electrical resistance 
Larmor radius 
s matrix 
Stix's plasma parameter 
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s 

T 
mc 2 

r o -  
K 

"c 

U 

I) 

vii 
I).1_ 

0~/~ 

(711 
(72 
(7#v 

Z 

Z 

Z 
x 

4, 
4 
0 

o - m/ e .  

2B 

•c 
v 

Vm 

A58 
A70 

AA56 
AB65 

AH59 
AM59 
AR69 
BC62 
BPP69 
C67 
Ca67 
C69 
C71 

spin quantum number  

electromagnetic stress tensor 

energy momen tum tensor 

temperature (in K) 

relativistic temp 

half  life o f  electron 

energy density 

electron velocity 

electron velocity parallel to magnetic field 
electron velocity perpendicular to magnetic field 

electrical conductivity tensor 

electrical conductivity along magnetic field 

electrical conductivity perpendicular to magnetic field 

produc t  o f  Dirac matrix ( =  - i 7 ~ )  

atomic number  

grand parti t ion function 

magnetic susceptibility 

electron momen tum in units of  mc 

wave function of  electron 
scalar potential 

angle 
field strength parameter  (H e-- mZc3/eh = 4.414 x 1013 G) 

de-Broglie wave length 

Compton  wave length of  the electron divided by 2n 

frequency 

minimum frequency of  emission 

neutrino 

antineutrino 
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